, Volume 28, Issue 2, pp 241–251 | Cite as

Linking phytoplankton community composition with juvenile-phase growth in the Northern QuahogMercenaria mercenaria (L.)

  • Dianne I. Greenfield
  • Darcy J. Lonsdale
  • Robert M. Cerrato


This study examined whetherMercenaria mercenaria (L.) (quahog) growth is influenced by variability in phytoplantkon community composition in the waters of Long Island, New York. Field studies conducted during 1999 and 2000 compared juvenile quahog growth and phytoplankton assemblages between West Sayville (WS), an embayment in Great South Bay along Long Island’s south shore where quahog landings have recently declined, and Oyster Bay (OB), an embayment on Long Island’s north shore where quahog landings are still high. Quahogs grew better at OB than WS during both study years. Centric diatoms were typically the dominant phytoplankton species at OB, and pennate diatoms and dinoflagellates characterized WS. At WS, the phytoplankton community consisted of heterotrophic dinoflagellates during a brown tide in 2000 and pennate diatoms afterward. Nanoflagellates were abundant (105–106 cells ml−1) at WS throughout the summer of 2000. Multiple regression analysis revealed a significant effect of site and temperature on individual clam biomass during both years, but brown tide was only significant during 2000. Biomass comparisons of dominant phytoplantkon taxa with laboratory physiology studies showed that 0B, with its abundance of centric diatoms, likely represented a more nutritional diet for quahogs than pennate diatoms, which were abundant at WS. Small flagellates, which were common at WS, may also have been important for sustaining growth during some months. Variability in plankton assemblages between OB and WS likely represented two distinct, diets that were critical influences on clam growth.


Phytoplankton Dinoflagellate Centric Diatom Brown Tide South Shore 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Banse, K. andS. Mosher. 1980. Adult body mass and annual production/biomass relationships of field populations.Ecological Monographs 50:355–379.CrossRefGoogle Scholar
  2. Bass, A. E., R. E. Malouf, andS. E. Shumway. 1990. Growth of northern quahogs (Mercenaria mercenaria (Linnaeus, 1758)) fed on picoplankton.Journal of Shellfish Research 9:299–307.Google Scholar
  3. Boissonneault-Cellineri, K. R., M. Mehta, D. J. Lonsdale, andD. A. Caron. 2001. Microbial food web interactions in two-Long Island embayments.Aquatic Microbial Ecology 26:139–155.CrossRefGoogle Scholar
  4. Bricelj, V. M., J. Epp, andR. E. Malouf. 1987. Intraspecific variation in reproductive and somatic growth cycles of bay scallops,Argopectin irradians.Marine Ecology Progress Series 36: 123–137.CrossRefGoogle Scholar
  5. Bricelj, V. M., S. E. Ford, F. J. Borrero, F. O. Perkins, G. Rivara, R. E. Hillman, R. A. Elston, andJ. Chang. 1992. Unexplained mortalities of hatchery-reared juvenile oysters,Crassostrea virginica (Gmelin).Journal of Shellfish Research 11:331–347.Google Scholar
  6. Bricelj, V. M. andD. J. Lonsdale. 1997.Aureococcus anophagefferens. Causes and consequences of brown tides in U.S. mid-Atlantic waters.Limnology and Oceanography 42:1023–1038.Google Scholar
  7. Bricelj, V. M., S. P. MacQuarrie, andR. A. Schaffner. 2001. Differential effects ofAurcococcus anophagefferens isolates (“brown tide”) in unialgal and mixed suspensions on bivalve feeding.Marine Biology 139:605–615.CrossRefGoogle Scholar
  8. Bricelj, V. M., R. E. Malouf, andC. de Quillfeldt. 1984. Growth of juvenileMercenaria mercenaria and the effect of resuspended bottom sediments.Marine Biology 84:167–183.CrossRefGoogle Scholar
  9. Bruno, S. F., R. D. Staker, G. M. Sharma, andJ. T. Turner. 1983. Primary productivity and phytoplankton size fraction dominance in a temperate North Atlantic estuary.Estuaries 6:200–211.CrossRefGoogle Scholar
  10. Caron, D. A., M. R. Dennett, D. M. Moran, R. A. Schaffner, D. J. Lonsdale, C. J. Gobler, R. Nuzzi T. I. McLean. 2003. Development and application of a monoclonal-antibody technique for countingAureococcus anophagefferens, and alga causing recurrent brown tides in the mid-Atlantic United States.Applied and Environmental Microbiology 69:5492–5502.CrossRefGoogle Scholar
  11. Cassin, J. M. 1978. Phytoplankton floristics of a Long Island embayment.Bulletin of the Torrey Botanical Club 105:205–213.CrossRefGoogle Scholar
  12. Cosper, E. M., W. C. Dennison, E. J. Carpenter, V. M. Bricelj, J. G. Mitchell, S. H. Kuenster, D. Colflesh, andM. Dewey. 1987. Recurrent and persistent brown tide blooms perturb coastal marine ecosystem.Estuaries 10:284–290.CrossRefGoogle Scholar
  13. Couttreau, P., N. H. Hadley, J. J. Manzi, andP. Sorgeloos. 1994. Effect of algal ration and substitution of algae by manipulated yeast diets on the growth of juvenileMercenaria mercenaria.Aquaculture 120:135–150.CrossRefGoogle Scholar
  14. Dennison, W. C., G. J. Marshall, andC. Wigand. 1989. Effect of “brown tide” shading on eelgrass (Zostera marina L.) distributions. p. 675–693.In E. M. Cosper, E. J. Carpenter, and V. M. Bricelj (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer-Verlag, Berlin.Google Scholar
  15. Epifano, C. E. 1979. Growth in bivalve molluscs: Nutritional effects of two or more species of algae in diets fed to the American oysterCrassostrea virginica (Gmelin) and the hard clamMercenaria merceniara (L.).Aquaculture 18:1–12.CrossRefGoogle Scholar
  16. Flagg, P. J. andR. E. Malouf. 1983. Experimental plantings of juvenile of the hard clamMercenaria mercenaria (Linné) in the waters of Long Island, New York.Journal of Shellfish Research 3: 19–27.Google Scholar
  17. Gainey, L. F. andS. E. Shumway. 1991. The physiological effect ofAureococcus anophagefferens, (“brown tide”) on the lateral cilia of bivalve molluscs.Biological Bulletin 181:298–306.CrossRefGoogle Scholar
  18. Gobler, C. J., M. J. Renaghan, andN. J. Buck. 2002. Impacts of nutrients and grazing mortality on the abundance ofAureococcus anophagefferens during a New York brown tide bloom.Limnology and Oceanography 47:129–141.CrossRefGoogle Scholar
  19. Greenfield, D. I. 2002. The influence of variability in plankton community composition on juvenile growth in the hard clamMercenaria mercenaria (L.). Ph.D. Dissertation, Stony Brook University, Stony Brook, New York.Google Scholar
  20. Greenfield, D. I. andD. J. Lonsdale. 2002. Mortality and growth of juvenile hard clamsMercenaria mercenaria during brown tide.Marine Biology 141:1045–1050.CrossRefGoogle Scholar
  21. Greenfield, D. I., D. J. Lonsdale, R. M. Cerrato, andG. R. Lopez. 2004. Effects of background concentrations, ofAureococcus anophagefferens (brown tide) on growth and feeding in the bivalveMercenaria mercenaria.Marine Ecology Progress Series 274:171–181.CrossRefGoogle Scholar
  22. Griffiths, C. L. andR. J. Griffiths. 1987. Bivavla, p. 1–88.In T. J. Tanadian and F. J. Vernberg (eds.), Animal Energetics. Academic Press, New York.Google Scholar
  23. Grizzle, R. E., V. M. Bricelj, andS. E. Shumway. 2001. Physiological ecology ofMercenaria mercenaria, p. 305–382.In J. N. Krauter and M. Castagna (eds.), Biology of the Hard Clam. Elsevier, Amsterdam.CrossRefGoogle Scholar
  24. Grizzle, R. E., R. Langan, andW. H. Howell. 1992. Growth responses of suspension-feeding bivalve mollusks to changes in water flow: Differences between siphonate and nonsiphonate taxa.Journal of Experimental Marine Biology and Ecology 162: 213–228.CrossRefGoogle Scholar
  25. Harte, M. E. 2001. Systematics and taxonomy, p. 3–52.In J. N. Kraeuter and M. Castagna (eds.), Biology of the Hard Clam. Elsevier, Amsterdam.CrossRefGoogle Scholar
  26. Kassner, J. 1988. The consequence of baymen: The hard clam (Mercenaria mercenaria Linne) management situation in Great South Bay, New York.Journal of Shellfish, Research 7:289–293.Google Scholar
  27. Kassner, J. 1993. Possible effects of reduced hard clam abundance in the Great South Bay.On the Water. July/August 4–5.Google Scholar
  28. Kassner, J. andT. W. Cramer. 1984. Evolution of the Great South Bay shellfish industry.Journal of Shellfish Research 4:91–92.Google Scholar
  29. Laing, I. S. D. Utting, andR. S. Kilada. 1987. Interactive effect of diet and temperature on the growth of juvenile clams.Journal of Experimental Marine Biology and Ecology 133:23–28.CrossRefGoogle Scholar
  30. Larson, A. E. 2000. The role of substrate type in characterizing the community parameters and the distribution ofMercenaria mercenaria (L.) in Great South Bay, New York. M.S. Thesis, Stony Brook University, Stony Brook, New York.Google Scholar
  31. Lesser, M. P., andS. E. Shumway. 1993. Effects of toxic dinoflagellates on clearance rates and survival in juvenile bivalve mollusks.Journal of Shellfish Research 12:377–381.Google Scholar
  32. Lively, J. S., Z. Kaufman, andE. J. Carpenter. 1983. Phytoplankton ecology of a barrier island estuary: Great South Bay, New York.Estuarine, Coastal, and Shelf Science 16:51–68.CrossRefGoogle Scholar
  33. Lonsdale, D. J., E. M. Cosper, W. S. Kim, M. Doall, A. Divadeenam, andS. H. Jonasdottir. 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects.Marine Ecology Progress Series 134: 247–263.CrossRefGoogle Scholar
  34. Malouf, R. E. andV. M. Bricelj. 1989. Comparative biology of clams: Environmental tolerances, feeding, and growth, p. 23–73.In J. J. Manzi and M. Castagna (eds.), Clam Mariculture in North America. Elsevier, Amsterdam.Google Scholar
  35. McHugh, J. L. 1991. The hard clam fishery past and present, p. 55–64.In J. R. Schubel, T. M. Bell and H. H. Carter (eds.), The Great South Bay. State University of New York Press, Albany, New York.Google Scholar
  36. McHugh, J. L. andJ. C. Ginter. 1978. Recent advances in hard clam mariculture.Journal of Shellfish Research 1:51–56.Google Scholar
  37. Mohlenberg, F. andH. U. Risgård. 1978. Efficiency of particle retention in 13 species of suspension feeding bivalves.Ophelia 17:239–246.Google Scholar
  38. Nuzzi, R. andR. M. Waters. 1989. The spatial and temporal distributions of “brown tide” in eastern Long Island, p. 117–137.In E. M. Cosper, E. J. Carpenter; and V. M. Bricelj (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer-Verlag, Berlin.Google Scholar
  39. Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge, Maryland.Google Scholar
  40. Porter, K. G. andY. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora.Limnology and Oceanography 25:943–948.Google Scholar
  41. Pratt, D. M. andD. A. Campbell. 1956. Environmental factors affecting the growth ofMercenaria.Limnology and Oceanography 1:2–17.Google Scholar
  42. Putt, M. andD. K. Stoecker. 1989. An experimentally determined carbonvolume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters.Limnology and Oceanography 34:1097–1103.CrossRefGoogle Scholar
  43. Riisgård, H. U. 1988. Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves.Marine Ecology Progress Series 45:217–223.CrossRefGoogle Scholar
  44. Smayda, T. J. 1978. From phytoplankters to biomass, p. 273–279.In A. Sournia (ed.), Phytoplantkon Manual. UNESCO, Paris.Google Scholar
  45. Smayda, T. J. andT. A. Villareal. 1989. The 1985 “brown tide” and the open phytoplankton niche in Narragansett Bay during summer, p. 159–188.In E. M. Cosper, E. J. Carpenter, and V. M. Bricelj (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer-Verlag, Berlin.Google Scholar
  46. Sokal, R. R. andF. J. Rohlf. 1995. Biometry: The Principles and Practice of Statistics in Biological Research., 3rd edition. Freeman and Co., New York.Google Scholar
  47. Stoecker, D. K., M. E. Sieracki, P. G. Verity, A. E. Michaels, E. Haugen, P. H. Burkill, andE. S. Edwards. 1994. Nanoplankton and protozoan microzooplankton during the JGOFS N. Atlantic Bloom Experiment: 1989 and 1990.Journal of the Marine Biology Association of the UK 74:427–443.CrossRefGoogle Scholar
  48. Strickland, J. D. andT. D. Parsons. 1972. A practical handbook of seawater analysis.Journal of the Fisheries Research Board of Canada 167:49–80.Google Scholar
  49. Tantichodok, P. 1990. Relative importance of phytoplankton and organic detritus as food sources for the suspension-feeding bivalve,Mytilus edulus L., in Long Island Sound. Ph.D. Dissertation., State University of New York, Stony Brook, New York.Google Scholar
  50. Ukeles, R. andG. H. Wikfors. 1982. Design, construction, and operation of a rearing chamber for spat ofCrassostrea virginica (Gmelin).Journal of Shellfish Research 2:35–39.Google Scholar
  51. Ukeles, R. andG. H. Wikfors. 1988. Nutritional value of microalgae cultured in the absence of vitamins for growth of juvenile oysters,Crassostrea virginica.Journal of Shellfish Research 7:381–387.Google Scholar
  52. Verity, P. G. andC. Langdon. 1984. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay.Journal of Plankton Research 6:859–868.CrossRefGoogle Scholar
  53. Walne, P. R. 1970. Studies on the food value of nineteen genera of algae to juvenile bivalves of the generaOstrea, Crassostrea, Mercenaria, andMytilus.Fisheries Investigations Series II 26:1–62.Google Scholar
  54. Wikfors, G. H., G. E. Ferris, andB. C. Smith. 1992. The relationship between gross biochemical composition of cultured algal foods and growth of the hard clam.Mercenaria mercenaria (L.).Aquaculture 108:135–154.CrossRefGoogle Scholar
  55. Wikfors, G. H. andR. M. Smolowitz. 1993. Detrimental effects of aProrocentrum isolate upon hard clams and bay scallops in laboratory feeding studies, p. 447–452.In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam.Google Scholar

Source of Unpublished Materials

  1. Czyzyk, S. personal communication. Manager, Blue Points Oyster Company, Atlantic Avenue, West Sayville, New York 11796.Google Scholar
  2. New York State Department of Environmental Conservation and National. Marine Fisheries Service. unpublished data. Fisheries Statistics Division, 1315 East-West Highway, Silver Spring Maryland 20910.Google Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  • Dianne I. Greenfield
    • 1
  • Darcy J. Lonsdale
    • 2
  • Robert M. Cerrato
    • 2
  1. 1.Monterey Bay Aquarium Research InstituteMoss Landing
  2. 2.Marine Sciences Research CenterStony Brook UniversityStony Brook

Personalised recommendations