Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 13, Issue 3, pp 591–604 | Cite as

Statistical derivation of the nuclear rotational energies

  • K. Kumar
Article

Summary

The nucleus is treated as a Fermi gas under the constraint of a given angular momentumI. Its energy is expressed as a power series inI2, and the rotational and rotation-vibration interaction terms are identified. The interparticle interactions do not influence the rotational energies whereas they have important influence on the rotation-vibration energies. Several models for angular momentum production are considered. The experimental trend of the moments of inertia is reproduced by a model in which only nucleons outside a certain «core» produce the total angular momentum. The vibrational frequency is insensitive to such models. The surface effects and the influence of velocity dependent forces are also taken into account.

Riassunto

Si tratta il nucleo come un gas di Fermi con l’imposizione di un dato impulso angolareI. Si esprime la sua energia come una serie di potenze inI2 e si identificano i termini d’interazione rotazionali e vibrorotazionali. Le interazioni fra particelle non influsicono sulle energie rotazionali, mentre agiscono in modo rilevante sulle energie vibrorotazionali. Si considerano vari modelli per la produzione degli impulsi angolari. La tendenza dei momenti d’inerzia risultante sperimentalmente è riprodotta da un modello in cui solo i nucleoni esterni a un determinato «core» producono l’impulso angolare totale. La frequenza vibrazionale non è influenzata da tale modello. Si tiene anche conto degli effetti superficiali e dell’influenza delle forze dipendenti dalla velocità.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. A. Moszkowski:Encycl. Phys.,39, 411 (1957).Google Scholar
  2. (2).
    D. R. Inglis:Nucl. Phys.,8, 125 (1958).CrossRefGoogle Scholar
  3. (3).
    L. Meichsner:Nucl. Phys.,8, 493 (1958).CrossRefGoogle Scholar
  4. (4).
    H. J. Lipkin:Nucl. Phys.,8, 421 (1958).CrossRefGoogle Scholar
  5. (5).
    A. M. Sessler andH. M. Foley:Phys. Rev.,96, 366 (1954).ADSCrossRefMATHGoogle Scholar
  6. (6).
    A. Bohr andB.R. Mottelson:Mat. Fys. Medd. Dan. Vid. Selsk.,26, no. 16 (1953);A. Bohr:Rotational States of Atomic Nuclei (Copenhagen, 1954).Google Scholar
  7. (7).
    G. M. Temmer andN. P. Heydenberg:Phys. Rev.,104, 967 (1956).ADSCrossRefGoogle Scholar
  8. (8).
    K. W. Ford andD. L. Hill:Ann. Rev. Nuc. Sc.,5, 25 (1955).ADSCrossRefGoogle Scholar
  9. (9).
    D. L. Hill andJ. A. Wheeler:Phys. Rev.,89, 1102, (1953);K. A. Brueckner:Phys. Rev.,96, 508 (1954).ADSCrossRefMATHGoogle Scholar
  10. (10).
    H. A. Bethe:Phys. Rev.,103, 1353 (1956);W. E. Frahn andR. H. Lemmer:Nuovo Cimento,5, 1565 (1957);6, 1221 (1957).ADSCrossRefMATHGoogle Scholar
  11. (11).
    K. Alder and others:Rev. Mod. Phys.,28, 432 (1956), Table V2.MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1959

Authors and Affiliations

  • K. Kumar
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombay

Personalised recommendations