Siberian Mathematical Journal

, Volume 39, Issue 1, pp 29–38 | Cite as

On a certain representation of a free Lie algebra

  • Yu. B. Ermolaev


Induction Hypothesis Primal Word Divided Power Homogeneous Component Canonical Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ree, “Lie elements and an algebra associated with shuffles,” Ann. of Math. (2),68, 210–220 (1958).CrossRefMathSciNetGoogle Scholar
  2. 2.
    A. A. Zolotykh and A. A. Mikhalev, “Shuffle superalgebras,” in: Fundamental Problems in Mathematics and Mechanics [in Russian], Moscow Univ., Moscow, 1994, pp. 279–280.Google Scholar
  3. 3.
    A. A. Zolotykh and A. A. Mikhalev, “The base of free shuffle superalgebras,” Uspekhi Mat. Nauk,50, No. 1, 199–200 (1995).MathSciNetGoogle Scholar
  4. 4.
    K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, Rings That Are Nearly Associative [in Russian], Nauka, Moscow (1978).Google Scholar
  5. 5.
    J.-P. Serre, Lie Algebras and Lie Groups [Russian translation], Mir, Moscow (1969).MATHGoogle Scholar
  6. 6.
    I. L. Kantor, “Graded Lie algebras”, in: Proceedings of a Seminar on Vector and Tensor Analysis [in Russian], Moscow Univ., Moscow, 1970, No. 15, pp. 227–266.Google Scholar
  7. 7.
    Yu. B. Ermolaev, “A universal Cartan continuation,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 11, 22–32 (1997).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Yu. B. Ermolaev

There are no affiliations available

Personalised recommendations