Glass Physics and Chemistry

, Volume 26, Issue 5, pp 490–493 | Cite as

Chemical interaction at the aluminoborosilicate melt—steel interface

  • E. N. Bondar
  • V. A. Zhabrev
  • Yu. P. Udalov


The processes occurring at the oxide melt-steel substrate interface have been considered by the example of aluminoborosilicate, sodium silicate, and sodium aluminate systems. Conclusions are drawn regarding the mechanism of physicochemical interactions at the phase boundary and the influence of the acidity index on the formation of intermetallic interfacial layer.


Intermetallic Compound Sodium Silicate Glass Physic Sodium Aluminate Functional Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elektrotermicheskie protsessy khimicheskoi tekhnologii (Electrothermal Processes in Chemical Engineering), Ershov, V.A., Ed., Leningrad: Khimiya, 1984.Google Scholar
  2. 2.
    Galakhov, F.Ya., High-Temperature Microfurnace for Study of Heterogeneous Equilibria in High-Melting Oxide Systems, inSovremennye metody issledovaniya silikatov i stroitel’nykh materialov (Modern Methods for Investigation of Silicates and Building Materials), Moscow: Gosstroiizdat, 1960, pp. 178–182.Google Scholar
  3. 3.
    Zhabrev, V.A. and Plotnikova, M.N., Redox Reactions upon Interaction of Metals with Oxide Melt, inTempera-turoustoichivye funktsional’nye pokrytiya (Temperature-Resistant Functional Coatings), St. Petersburg: St. Petersburg Gos. Univ., 1997, pp. 34–38.Google Scholar
  4. 4.
    Konakov, V.G., Metal Oxidation in Oxide Melts as Heterophase Reaction: The Role of “Metal-Oxide MeltOxygen” Three-Phase Boundary in Coating Formation Process, inTemperaturoustoichivye funktsional’nye pokrytiya (Temperature-Resistant Functional Coatings), St. Petersburg: St. Petersburg Gos. Univ., 1997, pp. 17–24.Google Scholar
  5. 5.
    Schmidt, E., Christen, M. and Beyeler, P., Adsorbtion und Legier ndsbuldung bei der Cd-abscheidung,J. Electroanal. Chem. Interfacial Electrochem., 1973, vol. 42, pp. 275–282.CrossRefGoogle Scholar
  6. 6.
    Bort, H., Jutter, K. and Larenz, W., Interplay of Nickel with a Steel Substrate,J. Electrochem. Acta, 1983, vol. 28, pp. 993–998.CrossRefGoogle Scholar
  7. 7.
    Szabo, S., Adsorption of Metals,J. Electroanal. Chem. Interfacial Electrochem., 1989, vol. 263, pp. 137–146.CrossRefGoogle Scholar
  8. 8.
    Aguf, M.I., Karbasov, B.G. and Tikhonov, K.I., Formation of Surface Electrolytic Alloys in the Ag-Cd and CuCd Systems in the “Underpotential” Range,Elektrokhimiya, 1996, vol. 32, no. 6, pp. 778–780.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • E. N. Bondar
    • 1
  • V. A. Zhabrev
    • 2
  • Yu. P. Udalov
    • 1
  1. 1.St. Petersburg State Technological Institute (Technical University)PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesPetersburgRussia

Personalised recommendations