Glass Physics and Chemistry

, Volume 26, Issue 5, pp 418–424 | Cite as

A quantum-chemical study of the mechanism of ionic conductivity in alkali borate glasses

  • O. A. Kondakova
  • A. S. Zyubin
  • S. A. Dembovsky


The incorporation of alkali metal oxide molecules into a continuous random network of vitreous boron oxide is considered within the cluster approximation at a semiempirical MNDO level. It is found that the oxygen atom of the Li2O molecule easily forms an additional bond with the threefold-coordinated boron atom with the formation of the BO4 tetrahedron. Different types of metal cation motion in alkali borate glasses are treated. It is revealed that the M+ cation in neutral systems is predominantly located near the edges of a BO 4 - tetrahedron on the outside of the B-O-B corner fragments and can readily change its position. The M+ cation in the neighborhood of the pentaborate grouping makes a complete turn without considerable expenditure of energy. The vibrations with a change in the rotation angle from 180° to 270° are possible in tetraborates, and, only in the neighborhood of triborate, one position is substantially more stable than the other positions. The cation can migrate from center to center along chains of a continuous glass network on the outside of the B-O-B corner fragments. In the pentaborate and tetraborate centers, the cation can migrate into another chain and change its direction of motion.


Glass Physic Potential Energy Curve Borate Glass Diborate Modifier Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krogh-Moe, J., The Crystal Structures of Potassium Pentaborate, K2O · 5B2O3, and the Isomorphous Rubidium Compound,Ark. Kemi, 1959, vol. 14, pp. 439–449.Google Scholar
  2. 2.
    Hyman, A., Perloff, A., Mauer, F. and Block, S., The Crystal Structure of Sodium Tetraborate,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1967, vol. 22, pp. 815–821.Google Scholar
  3. 3.
    Krogh-Moe, J., Refinement of the Crystal Structure of Lithium Diborate, Li2O · 2B2O3,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1968, vol. 24, pp. 179–181.CrossRefGoogle Scholar
  4. 4.
    Wright, A.C., Sinclair, R.N., Grimley, D.I., Hulme, R.A., Vedishcheva, N.M., Shakhmatkin, B.A., Hannon, A.C., Feller, S.A., Meyer, B.M., Royle, M.L. and Wilkerson, D.L., Borate Glasses, Superstructural Units, and the Random Network Theory,Fiz. Khim. Stekla, 1996, vol. 22, no. 4, pp. 364–383 [Glass Phys. Chem. (Engl. transi.), 1996, vol. 22, no. 4, pp. 268-278].Google Scholar
  5. 5.
    Zyubin, A.S., Dembovsky, S.A. and Kondakova, O.A., Quantum Chemical Study of the Network Modification in Vitreous B2O3,J. Non-Cryst. Solids, 1998, vol. 224, pp. 291–298.CrossRefGoogle Scholar
  6. 6.
    Kondakova, O.A., Dembovsky, S.A. and Zyubin, A.S., Quantum-Chemical Simulation of the Incorporation of a Li2O Molecule into Vitreous B2O3 and SiO2,Fiz.- Khim. Stekla, 1999, vol. 25, no. 5, pp. 582–592. [Glass Phys. Chem. (Engl. transi.), 1999, vol. 25, no. 5, pp. 441–448].Google Scholar
  7. 7.
    Krogh-Moe, J., Interpretation of the Infra-Red Spectra of Boron Oxide and Alkali Borate Glasses,Phys. Chem. Glasses, 1965, vol. 6, pp. 46–54.Google Scholar
  8. 8.
    Chekhovskii, V.G., Interpretation of IR Spectra of Alkali Borate Glasses,Fiz. Khim. Stekla, 1985, vol. 11, no. 1, pp. 24–33.Google Scholar
  9. 9.
    Kolesova, V.A., Vibrational Spectra and Structure of Alkali Borate Glasses,Fiz. Khim. Stekla, 1986, vol. 12, no. l, pp. 4–13.Google Scholar
  10. 10.
    Jellison, G.E. and Bray, P.J., A Structural Interpretation of10B and11B NMR Spectra in Sodium Borate Glasses,J. Non-Cryst. Solids, 1978, vol. 29, pp. 187–206.CrossRefGoogle Scholar
  11. 11.
    Feller, S.A., Dell, W.J. and Bray, P.J.,10B NMR Studies of Lithium Borate Glasses,J. Non-Cryst. Solids, 1982, vol. 51, pp. 21–30.CrossRefGoogle Scholar
  12. 12.
    Bray, P.J. and O’Keefe, J.G., NMR Investigation of the Structure of Alkali Borate Glasses,Phys. Chem. Glasses, 1963, vol. 4, pp. 37–46.Google Scholar
  13. 13.
    Bray, P.J., NMR Studies of the Structures of Glasses,J. Non-Cryst. Solids, 1987, vols. 95-96, pp. 45–60.CrossRefGoogle Scholar
  14. 14.
    Soppe, W., Van der Marel, C., and den Hartog, H.W., Structural and Dynamical Properties of Some Lithium Borate Glasses,J. Non-Cryst. Solids, 1988, vol. 101, pp. 101–110.CrossRefGoogle Scholar
  15. 15.
    Ramos, M.A., Vieira, S. and Kalleja, J.M., Temperature Dependence of the Polarization of the Dominant Raman Lines in B2O3 and (B2O3)0.84(Na2O)0.16 Glasses,Solid State Commun., 1987, vol. 64, pp. 455–451.CrossRefGoogle Scholar
  16. 16.
    Hirao, K. and Soga, N., Molecular Dynamic Simulation of Eu -Doped Sodium Borate Glasses and Their Fluorescence Spectra,J. Am. Ceram. Soc., 1985, vol. 68, pp. 515–521.CrossRefGoogle Scholar
  17. 17.
    Inoue, H., Aoki, N. and Yasui, I., Molecular Dynamics Simulation of the Structure of Borate Glasses,J. Am. Ceram. Soc., 1987, vol. 70, pp. 622–627.CrossRefGoogle Scholar
  18. 18.
    Xu, Q., Kawamura, K. and Yokokawa, T., Molecular Dynamic Calculations for Boron Oxide and Sodium Borate Glasses,J. Non-Cryst. Solids, 1988, vol. 104, pp. 261–272.CrossRefGoogle Scholar
  19. 19.
    Uchido, N., Maekawa, T. and Yokokawa, T., An Application of MNDO Calculation of Borate Polyhedra,J. Non-Cryst. Solids, 1985, vol. 74, pp. 25–36.CrossRefGoogle Scholar
  20. 20.
    Uchido, N., Maekawa, T. and Yokokawa, T., MNDO Study of Basicity in Borate Classes,J. Non-Cryst. Solids, 1986, vol. 85, pp. 290–308.CrossRefGoogle Scholar
  21. 21.
    Uchido, N., Maekawa, T. and Yokokawa, T., Hard Basicity of Borate Anion Clusters,J. Non-Cryst. Solids, 1986, vol. 88, pp. 1–10.CrossRefGoogle Scholar
  22. 22.
    Soppe, W., Aldenkamp, F., and den Hartog, H.W., The Structure and Conductivity of Binary and Ternary Glasses (B2O3 1-x-y(Li2O)x(Li2Cl2 y J. Non-Cryst: Solids, 1987, vol. 91, pp. 351–374.CrossRefGoogle Scholar
  23. 23.
    Tuller, H.L. and Button, D.P., The Role of Structure in Fast Ion Conducing Glasses,Proc. Int. Conf. on Transport-Structure Relations in Fast Ion and Mixed Conduc-tors, Poulsen, F.W., Anderson, N.H., Clause, K., Skaarup, S., and Sorensen, O.T., Eds., Riso Nat. Lab. Denmark, 1985, p. 119.Google Scholar
  24. 24.
    Elliott, R.J., Perondi, L. and Barrio, R.A., Ionic Conduction in (1 - x)B2O3 + xLi2O,J. Non-Cryst. Solids, 1994, vol. 168, pp. 167–178.CrossRefGoogle Scholar
  25. 25.
    Bunde, A., Ingram, M.D. and Maas, P., The Dynamic Structure Model for Ion Transport in Glasses,J. Non-Cryst. Solids, 1994, vols. 172-174, pp. 1222–1236.CrossRefGoogle Scholar
  26. 26.
    Massot, M., Souto, S. and Balkanski, M., Short and Medium Range Order in Ternary Borate Glasses,J. Non-Cryst. Solids, 1995, vol. 182, pp. 49–58.CrossRefGoogle Scholar
  27. 27.
    Dewar, M.J.S. and Thiel, W., Ground States of Mole-cules: 38. The MNDO Method: Approximations and Parameters,J. Am. Chem. Soc., 1977, vol. 99, pp. 4899–4907.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • O. A. Kondakova
    • 1
  • A. S. Zyubin
    • 2
  • S. A. Dembovsky
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of New Chemical ProblemsRussian Academy of SciencesMoscow oblastRussia

Personalised recommendations