Il Nuovo Cimento A Series 11

, Volume 109, Issue 6–7, pp 617–629 | Cite as

Asymmetries in charm production in fixed-target experiments

  • A. M. Halling


From the experimentalist’s viewpoint the measurement of charm production asymmetries, the ratio of charm production cross-sections for particle and anti-particle, is a very productive field. Accurate measurements can be made that are largely free of systematic errors, and since leading-order QCD calculations produce no asymmetry, these measurements test fragmentation and other effects. Simple phenomenological models explain the gross features of the data, while a variety of more detailed models attempt to fit the rich details of the present data samples. This paper will briefly highlight the differences among a few of the theoretical models, and include a brief history of recent experimental measurements. New measurements from present experiments will be presented in more detail, with an emphasis on recent results from WA89, E687 and E791. This will be followed by a short summary of results expected in the near future from these and similar experiments, and by a shorter preview of the improvements expected in the next decade.


13.85.Ni - Inclusive production with identified hadrons 


14.40.Lb - Charmed mesons 


25.80.Ls - Pion inclusive scattering and absorption 


01.30.Cc - Conference proceedings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Appel J.,Annu. Rev. Nucl. Part. Sci.,42 (1992) 367.CrossRefADSGoogle Scholar
  2. [2]
    Beenakker W. et al., Nucl. Phys. B,351 (1991) 507.CrossRefADSGoogle Scholar
  3. [3]
    Nason P., Dawson S. andEllis K.,Nucl. Phys. B,327 (1989) 49.CrossRefADSGoogle Scholar
  4. [4]
    Sjostrand T.,Comput. Phys. Commun.,82 (1994) 74.CrossRefADSGoogle Scholar
  5. [5]
    Vogt R. andBrodsky S. J.,Nucl. Phys. B,438 (1995) 261.CrossRefADSGoogle Scholar
  6. [6]
    Wa R.,Phys. Rev. D,51 (1995) 85.CrossRefADSGoogle Scholar
  7. [7]
    Golubkov Y., DESY 94-060 (1994).Google Scholar
  8. [8]
    Bednyakov V. A.,Mod. Phys. Lett. A,10 (1995) 61.CrossRefADSGoogle Scholar
  9. [9]
    Aguilar-Benitez M. et al., Phys. Lett. B,168 (1986) 170;Z. Phys. C,31 (1986) 491.CrossRefADSGoogle Scholar
  10. [10]
    Ritchie J. L. et al., Phys. Lett. B,138 (1984) 213.CrossRefADSGoogle Scholar
  11. [11]
    Barlag S. et al., Z. Phys. C,49 (1991) 555.CrossRefGoogle Scholar
  12. [12]
    Barlag S. et al., Phys. Lett. B,247 (1990) 113.CrossRefADSGoogle Scholar
  13. [13]
    Anjos J. C. et al., Phys. Rev. Lett.,62 (1989) 513.CrossRefADSGoogle Scholar
  14. [14]
    Alvarez M. P. et al., Z. Phys. C,60 (1993) 53.CrossRefADSGoogle Scholar
  15. [15]
    Adamovich M. et al., Phys. Lett. B,305 (1993) 402.CrossRefADSGoogle Scholar
  16. [16]
    Alves G. A. et al., Phys. Rev. Lett.,72 (1994) 812.CrossRefADSGoogle Scholar
  17. [17]
    Leitch M. J. et al., Phys. Rev. Lett.,72 (1994) 2542.CrossRefADSGoogle Scholar
  18. [18]
    Cremaldi L.,Proceedings of the XXVI International Conference on High Energy Physics, Dallas, Texas, August 1992, Vol.1, p. 1058.Google Scholar
  19. [19]
    Amato S. et al., Nucl. Instrum. Methods A,324 (1993) 535.CrossRefADSGoogle Scholar
  20. [20]
    Barlag S. et al., Phys. Lett. B,233 (1994) 531.ADSGoogle Scholar
  21. [21]
    NA32Collaboration (S. Kwan),CERN Particle Physics Colloquium, March 1988.Google Scholar
  22. [22]
    Frabetti P. L. et al., Nucl. Instrum. Methods A,329 (1993) 62;320 (1992) 519.CrossRefADSGoogle Scholar
  23. [23]
    Garbincious P.,Proceedings of the Lafex International School in High Energy Physics, Centro Brasiliero de Pesquisas Fisicas (CBPF), Rio de Janeiro, Brazil, February 20, 1995.Google Scholar
  24. [24]
    Gardner R.,Proceedings of the XXX Recontres de Moriond, Les Arcs, France, March 19–26, 1995.Google Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • A. M. Halling
    • 1
  1. 1.FermilabBataviaUSA

Personalised recommendations