Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 4, Issue 4, pp 765–772 | Cite as

Spin-zero pole dominance in the weak and electromagnetic interactions of the K-meson

  • R. Arnowitt
  • M. H. Friedman
  • P. Nath
  • P. Pond
Article

Summary

The assumption of π, η and σ dominance of the weak and electromagnetic decays of the K-meson is examined using the hard-meson current algebra amplitudes for the strong-interaction factors. The K → 3π decay spectrum, the K L 0 → 2γ decay and the K L 0 -K S 0 mass difference are calculated and compared with experiment.

Доминантность полюса с нулевым спином в слабых и злектромагнитных вэаимодействиях К меэона

Реэюме

Испольэуя амплитуды алгебры токов жестких меэонов для факторов сильных вэаимодействий, исследуется предположение π, η и σ доминантности в слабых и злектромагнитных распадах К меэона. Вычисляются и сравниваются с зкспериментом спектр распада К → 3π, распад К L 0 → 2γ и раэность масс К L 0 -К{S/0}.

Riassunto

Si esamina l’ipotesi della predominanza di π, η e σ nei decadimenti deboli ed elettromagnetici del mesone K facendo uso delle ampiezze dell’algebra delle correnti del mesone duro per i fattori dell’interazione forte. Si calcolano lo spettro del decadimento K → 3π, il decadimento K L 0 → 2γ e la differenza di massa K L 0 -K S 0 e li si confrontano con i dati sperimentali.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. (1).
    C. Lovelace:Phys. Lett.,28 B, 265 (1968).ADSGoogle Scholar
  2. (2).
    M. A. B. Bég andP. C. DeCelles:Phys. Rev. Lett.,8, 46 (1962);G. Barton andS. P. Rosen:Phys. Rev. Lett.,8, 414 (1962);K. C. Wali:Phys. Rev. Lett.,9, 120 (1962);C. Kacser:Phys. Rev.,130, 355 (1963);S. Oneda andJ. C. Pati:Phys. Rev.,155, 1618, 1621 (1967).Google Scholar
  3. (3).
    R. Arnowitt, M. H. Friedman andP. Nath:Phys. Rev. Lett.,19, 1085 (1967);H. Schnitzer andS. Weinberg:Phys. Rev.,164, 1828 (1967);S. G. Brown andG. B. West:Phys. Rev. Lett.,19, 812 (1967);D. A. Geffen:Phys. Rev. Lett.,19, 770 (1967);T. Das, V. Mathur andS. Okubo:Phys. Rev. Lett.,19, 900 (1967).CrossRefADSGoogle Scholar
  4. (4).
    R. Arnowitt, M. H. Friedman, P. Nath andR. Suitor:Phys. Rev. Lett.,20, 475 (1968);Phys. Rev.,175, 1820 (1968).CrossRefADSGoogle Scholar
  5. (5).
    R. Arnowitt, M. H. Friedman andP. Nath:Phys. Lett.,27 B, 657 (1968).CrossRefADSGoogle Scholar
  6. (6).
    As is well known, agreement with decay spectra can only be achieved by suppressing the second class of diagrams. See, for example,M. Jacob, C. H. Llewellyn Smith andS. Pokorski:Nuovo Cimento,63 A, 574 (1969).CrossRefADSMATHGoogle Scholar
  7. (7).
    I. S. Gerstein, B. W. Lee, H. T. Nieh andH. J. Schnitzer:Phys. Rev. Lett.,19, 1064 (1967).CrossRefADSGoogle Scholar
  8. (9).
    S. Weinberg:Phys. Rev. Lett.,17, 616 (1966).CrossRefADSGoogle Scholar
  9. (10).
    A detailed comparison of the hard-meson ππ predictions with experiment can be found in the survey byR. Arnowitt:Proceedings of the Conference on ππ and Kπ Interactions (Argonne, Ill., 1969), p. 619.Google Scholar
  10. (11).
    Particle Data Group:Rev. Mod. Phys.,42, 87 (1970).CrossRefGoogle Scholar
  11. (12).
    The spectra for K0→3π0 are approximately flat. The K→2ππ+ decay spectrum is shown in ref. (10).Google Scholar
  12. (13).
    Particle Data Group:Rev. Mod. Phys.,42, 87 (1970)CrossRefGoogle Scholar
  13. (15).
    This is in contrast with other models that have proposed rapidly varying off-shell dependence,e.g.,Riazuddin andA. Q. Sarker:Phys. Rev. Lett.,20, 1455 (1968);S. Brown andG. W. West:Phys. Rev.,174, 1777 (1968). This off-shell variation is not needed by other data.CrossRefADSGoogle Scholar
  14. (17).
    R. E. Marshak, Riazuddin andC. P. Ryan:Theory of Weak Interactions in Particle Physics (New York, 1969), p. 622.Google Scholar
  15. (18).
    K. Nishijima:Phys. Rev. Lett.,12, 39 (1964);R. Rockmore andT. Yao:Phys. Rev. Lett.,18, 503 (1967);K. Kang andD. Land:Phys. Rev. Lett.,18, 503 (1967);P. W. Coulter:Phys. Rev. D,2, 2725 (1970).CrossRefADSGoogle Scholar
  16. (20).
    Cf. talks byE. Malamud, P. Schlein andL. J. Gutay:Proceedings of the Conference on ππandInteractions (Argonne, Ill., 1969).Google Scholar
  17. (21).
    Note, however, that the current algebra constraints forbid (4) λ1=0, so no singularity can occur in eq. (12).CrossRefADSGoogle Scholar
  18. (22).
    Recently,R. Rockmore:Phys. Rev. D,2, 2693 (1970) has calculatedΔ s and obtained a result that is about twice as large as the text value. This is due mainly to the fact that a different model of ππ interactions has been used. In Rockmore’s model, it is not possible to fit a down-up or up-up phase-shift solution (as required by the present π+π scattering data) but only an up-down solution.CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1971

Authors and Affiliations

  • R. Arnowitt
    • 1
  • M. H. Friedman
    • 1
  • P. Nath
    • 1
  • P. Pond
    • 1
  1. 1.Department of PhysicsNortheastern UniversityBoston

Personalised recommendations