Il Nuovo Cimento A (1965-1970)

, Volume 109, Issue 3, pp 281–299 | Cite as

Multichannel approach to studying scalar resonances

  • D. Krupa
  • V. A. Meshcheryakov
  • Yu. S. Surovtsev


TheN-channel formalism (in more detail, 2- and 3-channel) is presented which is based on such general principles, as analyticity and unitarity, and realizes an idea of the consistent account of the nearest (to the considered physical region) singularities on all sheets of the Riemann surface of theS-matrix, thus giving a chance to obtain model-independent information on multichannel resonances from the analysis of data on the coupled processes. The resonance representations by pairs of complex-conjugate clusters of poles and zeros on the Riemann surface and the conception of standard clusters as a model-independent test of the resonance presence are discussed. The role of closed channels in forming resonances and fictitious states is investigated. The method is exemplified with the isoscalars-wave channel of coupled processes ππ→ππ, K\(\overline K \), ππ and with analysing ππ scattering up to 1.9 GeV and scalar resonances.


21.10 - General and average properties of nuclei properties of nuclear energy levels 


14.40 - Mesons and meson resonances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Particle Data Group,Phys. Rev. D,50 (1994) 1173.CrossRefGoogle Scholar
  2. [2]
    Krupa D., Meshcheryakov V. A. andSurovtsev Yu. S.,Yad. Fiz.,43(1986) 231.Google Scholar
  3. [3]
    Krupa D., Meshcheryakov V. A. andSurovtsev Yu. S.,Problems on High Energy Physics and Field Theory, Proceedings of the IX Workshop, Protvino, 1986 (Nauka, Moscow) 1987, p. 335.Google Scholar
  4. [4]
    Krupa D., Meshcheryakov V. A. andSurovtsev Yu. S.,Czech. J. Phys. B,38 (1988) 1129.CrossRefADSMATHGoogle Scholar
  5. [5]
    Krupa D., Meshcheryakov V. A. andSurovtsev Yu. S.,Yad. Fiz.,54 (1991) 1412.Google Scholar
  6. [6]
    Krupa D., Meshcheryakov V. A. andSurovtsev Yu. S.,Yad. Fiz.,58 (1995) 1672.Google Scholar
  7. [7]
    Close F. E., Dokshitzer Yu. L., Gribov V. N., Khose V. andRyskin M. G.,Phys. Lett. B,319 (1993) 291.CrossRefADSGoogle Scholar
  8. [8]
    Jaffe R. L.,Phys. Rev. D,15 (1977) 267, 281.CrossRefADSGoogle Scholar
  9. [9]
    Achasov N. N., Devyanin S. A. andShestakov G. N.,Phys. Lett. B,96 (1980) 168;Z. Phys. C,22 (1984) 53.CrossRefADSGoogle Scholar
  10. [10]
    Dorokhov A. E., Zubov Yu. A. andKochelev N. I.,Yad. Fiz.,50 (1989) 1717; JINR Commun. E2-89-867, Dubna (1989).Google Scholar
  11. [11]
    Jaffe R. L.,Phys. Lett.,41 (1975) 271;Robson D.,Nucl. Phys. B,130 (1977) 328.Google Scholar
  12. [12]
    Törnqvist N.,Phys. Rev. Lett.,49 (1982) 624.CrossRefADSGoogle Scholar
  13. [13]
    Lanik J.,Phys. Lett. B,306 (1993) 139.CrossRefADSGoogle Scholar
  14. [14]
    Lanik J.,Z. Phys. C,39 (1988) 143.CrossRefADSMATHGoogle Scholar
  15. [15]
    Majewski M.,Z. Phys. C,39 (1988) 121.CrossRefADSGoogle Scholar
  16. [16]
    Weinstein J. andIsgur N.,Phys. Rev. D,27 (1983) 588;41 (1990) 2236.CrossRefADSMATHGoogle Scholar
  17. [17]
    Cannata F., Dedonder J. P. andLeśniak L.,Phys. Lett. B,207 (1988) 115.CrossRefADSGoogle Scholar
  18. [18]
    Au K. L., Morgan D. andPennington M. R.,Phys. Rev. D,35 (1987) 1633.CrossRefADSGoogle Scholar
  19. [19]
    Morgan D. andPennington M. R.,Phys. Rev. D,48 (1993) 1185.CrossRefADSGoogle Scholar
  20. [20]
    Kato M.,Ann. Phys.,31 (1965) 130.CrossRefADSMATHGoogle Scholar
  21. [21]
    Dalitz R. H.,Rev. Mod. Phys.,33 (1961) 471.CrossRefADSMATHGoogle Scholar
  22. [22]
    Le Couteur K. J.,Proc. R. Soc. London, Ser. A,256 (1960) 115;Newton R. G.,J. Math. Phys.,2 (1961) 188.CrossRefADSGoogle Scholar
  23. [23]
    Hyams B. et al., Nucl. Phys. B,64 (1973) 134;100 (1975) 205.CrossRefADSGoogle Scholar
  24. [24]
    Zylbersztejn A. et al., Phys. Lett. B,38 (1972) 457;Sonderegger P. andBonamy P.,Proceedings of the V International Conference on Elementary Particles, Lund, 1969, paper 372;Bensinger J. R. et al., Phys. Lett. B,36 (1971) 134;Baton J. P. et al., Phys. Lett. B,33 (1970) 525, 528;Baillon P. et al.,Phys. Lett. B,38 (1972) 555;Rosselet L. et al., Phys. Rev. D,15 (1977) 574;Kartamyshev A. A. et al.,Pis’ma Ž. Ėksp. Teor. Fiz.,25 (1977) 68;Bel’kov A. A. et al., Pis’ma Ž. Ėksp. Teor. Fiz.,29 (1979) 652.CrossRefADSGoogle Scholar
  25. [25]
    Wicklund A. B. et al., Phys. Rev. Lett.,45 (1980) 1469;Cohen D. et al., Phys. Rev. D,22 (1980) 2595.CrossRefADSGoogle Scholar
  26. [26]
    Martin A. D. andOzmutlu E. N.,Nucl. Phys. B,158 (1977) 520.CrossRefADSGoogle Scholar
  27. [27]
    Etkin A. et al., Phys. Rev. D,25 (1982) 1786.CrossRefADSGoogle Scholar
  28. [28]
    Svec M., de Lesquen A. andvan Rossum L.,Phys. Rev. D,45 (1992) 55.CrossRefADSGoogle Scholar
  29. [29]
    Volkov M. K.,Ann. Phys.,157 (1984) 282;Nagy M., Suyarov U. S. andVolkov M. K.,JINR Rapid Communication no. 25–87, Dubna, 1987, p. 11.CrossRefADSGoogle Scholar
  30. [30]
    Kusaka K., Volkov M. K. andWeise W.,Phys. Lett. B,302 (1993) 145.CrossRefADSGoogle Scholar
  31. [31]
    Ellis J. andLanik J.,Phys. Lett. B,150 (1985) 289;175 (1986) 83.CrossRefADSGoogle Scholar
  32. [32]
    Cutkosky R. E. andWang S.,Phys. Rev. D,42 (1990) 235.CrossRefADSMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • D. Krupa
    • 1
  • V. A. Meshcheryakov
    • 2
  • Yu. S. Surovtsev
    • 3
  1. 1.Institute of PhysicsSlovak Academy of ScienceBratislavaSlovakia
  2. 2.International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear Research DubnaMoscow RegionRussian Federation

Personalised recommendations