Il Nuovo Cimento A (1965-1970)

, Volume 41, Issue 3, pp 470–486 | Cite as

Stochastic description of extended hadrons

  • Z. Haba
  • J. Lukierski


The dynamics of extended hadrons is described as a stochastic process in the imaginary proper-time variable. Internal dynamics is represented by the kernel which characterizes the probability flow of pointlike constituents. It appears that global and internal dynamics in proper time are separable, and for linearly extended hadron we derive the covariant Veneziano propagator. The invariance in dual models of Koba-Nielsen variables with respect to projective transformation is interpreted as the well-known projective invariance of the underlying Brownian motion. The generalization of the Feynman-Kac formula to the case of quantum fields describing extended objects is briefly discussed.

Стохастическое описание протяженных адронов


Описывается динамика протяженных адронов, как стохастический процесс по переменной мнимого собственного времени. Внутренняя динамика представляется с помошью ядра, которое характериэует вероятностный ток точечно-подобных составных частей. Окаэывается, что обшая и внутренняя динамики раэделяются по собственному времени. Для линейно протяженного адрона мы выводим ковариантный пропагатор Венециано. Инвариантность в дуальных моделях переменных Коба-Нильсена по отнощению к проективным преобраэованиям интерпретируется как хорощо иэвестная проективная инвариантность броуновского движения. Вкратце обсуждается формула Фейнмана-Кача на случай квантованных полей, описываюших протяженные общекты.


Si deserive la dinamica di adroni estesi come un processo stocastico nella variabile immaginaria del tempo proprio. La dinamica interna è rappresentata dal nocciolo che caratterizza il flusso di probabilità di costituenti puntiformi. Si vede che le dinamiche interna e globale sono separabili nel tempo proprio, e si deduce il propagatore covariante di Veneziano per adroni estesi linearmente. Si interpreta l’invarianza delle variabili di Koba-Nielsen in modelli duali come la ben nota invarianza proiettiva del moto Browniano di base. Si discute brevemente la generalizzazione della formula di Feynman-Kac al caso di campi quantici che descrivono oggetti estesi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (*).
    The proper-time parameter has been introduced byFock (1), and further used bySchwinger (2) andNambu (3). The relativistic classical mechanics based on the notion of proper time has been advocated byHorwitz andPiron (4). For the use of proper time in string models see,e.g., (5,6).Google Scholar
  2. (1).
    V. Fock:Žurn. Ėksp. Teor. Fiz.,12, 404 (1937).Google Scholar
  3. (2).
    Y. Nambu:Prog. Theor. Phys.,5, 82 (1950).MathSciNetCrossRefADSGoogle Scholar
  4. (3).
    J. Schwinger:Phys. Rev.,82, 664 (1951).MathSciNetCrossRefADSGoogle Scholar
  5. (4).
    L. P. Horwitz andC. Piron:Helv. Phys. Acta,46, 316 (1973).Google Scholar
  6. (5).
    T. Shirafuji:Prog. Theor. Phys.,45, 501 (1971).MathSciNetCrossRefADSGoogle Scholar
  7. (6).
    R. Casalbuoni, J. Gomis andG. Longhi:Nuovo Cimento,24 A, 249 (1974).CrossRefADSGoogle Scholar
  8. (7).
    H. Ezawa, J. R. Klauder andL. A. Shepp:Ann. of Phys.,88, 588 (1975).MathSciNetCrossRefADSGoogle Scholar
  9. (8).
    S. Albeverio andR. Hoegh-Krohn:Journ. Math. Phys.,15, 1745 (1974).MathSciNetCrossRefADSGoogle Scholar
  10. (9).
    L. Streit: Schladming lecture (1976).Google Scholar
  11. (10).
    Z. Koba andH. B. Nielsen:Zeits. Phys.,229, 243 (1969).MathSciNetCrossRefADSGoogle Scholar
  12. (11).
    V. Alessandrini, D. Amati, M. le Bellac andD. I. Olive:Phys. Rep.,1 C, 269 (1971).CrossRefADSGoogle Scholar
  13. (12).
    M. A. Virasoro:Phys. Rev. D,1, 2933 (1970).CrossRefADSGoogle Scholar
  14. (13).
    J. Mansouri andY. Nambu:Phys. Lett.,39 B, 375 (1972).CrossRefADSGoogle Scholar
  15. (*).
    For the relation between stochastic equations and diffusion processes see,e.g., (14,16).Google Scholar
  16. (14).
    K. Itô andH. P. Mckean jr.:Diffusion Processes, II edition (Berlin, 1974).Google Scholar
  17. (15).
    E. B. Dynkin:Markov Processes (Berlin, 1965).Google Scholar
  18. (16).
    A. V. Skorohod andI. I. Gighman:Stochastic Differential Equations (Berlin, 1972).Google Scholar
  19. (*).
    We recall that the Wiener process is a mathematical model of the Brownian motion (see,e.g., (17)). The expectation valueE is an average over the set of all pathsW(α, τ) with respect to the corresponding Wiener measure.Google Scholar
  20. (17).
    M. Kac:Probability and Related Topics in Physical Sciences (New York, N. Y., 1959).Google Scholar
  21. (***).
    The diffusion processes in infinite-dimensional spaces have been studied recently extensively; see,e.g., (18,21). In particular one can show that the fundamental solution satisfying (16) and (17) exists.Google Scholar
  22. (18).
    Yu. L. Daletsky:Usp. Mat. Nauk,22, 3 (1967) (in Russian).Google Scholar
  23. (19).
    S. W. Fomin:Dokl. Akad. Nauk USSR,181, 812 (1968).Google Scholar
  24. (20).
    L. Gross:Journ. Funct. Anal.,1, 123 (1967).CrossRefGoogle Scholar
  25. (21).
    S. Albeverio andR. Hoegh-Krohn: Institute of Mathematics, Oslo preprints 20/1975 and 4/1976.Google Scholar
  26. (*).
    See,e.g., (22), p. 56.Google Scholar
  27. (22).
    E. Nelson:Dynamical Theories of Brownian Motion (Princeton, N.J., 1967).Google Scholar
  28. (*).
    For the analogous discussion of one-dimensional oscillator see,e.g., (23).CrossRefADSGoogle Scholar
  29. (23).
    F. Guerra andP. Ruggiero:Phys. Rev. Lett.,31, 1022 (1973).CrossRefADSGoogle Scholar
  30. (24).
    M. Kaku andK. Kikkawa:Phys. Rev. D,10, 1110 (1974).CrossRefADSGoogle Scholar
  31. (*).
    See,e.g., (25), p. 17; see also (26).Google Scholar
  32. (25).
    T. Hida:Stationary Stochastic Processes (Princeton, N. J., 1970).Google Scholar
  33. (26).
    S. Takenaka:On projective invariance of multiparameter Brownian motion, Department of Mathematical, Nagoya University preprint, 1976.Google Scholar
  34. (*).
    For details see,e.g., (25), p. 116.Google Scholar
  35. (**).
    See,e.g., (27,28).Google Scholar
  36. (27).
    Y. Miyamoto:Prog. Theor. Phys.,43, 564 (1970).CrossRefADSGoogle Scholar
  37. (28).
    Y. Nakawaki andT. Saito:Prog. Theor. Phys.,48, 1324 (1972).CrossRefADSGoogle Scholar
  38. (*).
    The proof of such invariance for real proper time has been presented in (29).CrossRefADSGoogle Scholar
  39. (29).
    Y. Miyamoto:Prog. Theor. Phys.,43, 1620 (1970).CrossRefADSGoogle Scholar
  40. (30).
    P. Ramond:Group-theoretical properties of dual models, inBoulder Lectures (1971).Google Scholar
  41. (31).
    C. Marshall andP. Ramond:Nucl. Phys.,85 B, 375 (1975).CrossRefADSGoogle Scholar
  42. (32).
    F. Rohrlich:Phys. Rev. Lett.,34, 842 (1975).MathSciNetCrossRefADSGoogle Scholar
  43. (33).
    J. Rayski:Proc. Phys. Soc.,64 A, 957 (1951).MathSciNetCrossRefADSGoogle Scholar
  44. (34).
    H. Yukawa:Phys. Rev.,77, 219 (1950).MathSciNetCrossRefADSGoogle Scholar
  45. (*).
    See for example (35–37).Google Scholar
  46. (35).
    J. Lukierski:Lett. Nuovo Cimento,2, 784 (1971).MathSciNetCrossRefGoogle Scholar
  47. (36).
    N. S. Craigie andG. Preparata:Nucl. Phys.,102 B, 97 (1976).Google Scholar
  48. (37).
    Chiang:Phys. Lett.,62 B, 419 (1976).CrossRefADSGoogle Scholar
  49. (38).
    B. Simon:The P2)Euclidean (Quantum) Field Theory (Princeton, N. J., 1974).Google Scholar
  50. (39).
    K. Osterwalder andR. Schrader:Comm. Math. Phys.,31, 83 (1973).MathSciNetCrossRefADSGoogle Scholar
  51. (*).
    The list of papers in which the idea of describing quantum effects via random motions is a long one. For a small representative see (22,23,40–42).Google Scholar
  52. (40).
    I. Fenyes:Zeits. Phys.,132, 81 (1952).MathSciNetCrossRefADSGoogle Scholar
  53. (41).
    E. Nelson:Phys. Rev.,150, 1079 (1966).CrossRefADSGoogle Scholar
  54. (42).
    L. de la Pena-Auerbach:Journ. Math. Phys.,10, 1620 (1969).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1977

Authors and Affiliations

  • Z. Haba
    • 1
  • J. Lukierski
    • 2
  1. 1.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland
  2. 2.Z.I.F., Universität BielefeldBielefeldW. Germany

Personalised recommendations