Advertisement

Il Nuovo Cimento A

, Volume 56, Issue 1, pp 51–54 | Cite as

Nonlocal properties of the neutrino

  • S. B. Berger
Article

Summary

Fleming’s nonlocal center-of-energy position operator for massive, closed, relativistic systems is extended to the case of the (massless) Weyl neutrino. The nonlocal position operator derived in this new case is shown to be identical to corresponding operators introduced by me and also by Kalnay. Furthermore, I discuss a possible relationship between linear-momentum and angular-momentum operators in this special case.

Keywords

Position Operator Curve Space Momentum Operator Dirac Matrice Massless Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Riassunto

Si estende l’operatore di posizione del centro di energia non locale di Fleming per sistemi massivi, chiusi, relativistici, al caso del neutrino (privo di massa) di Weyl. L’operatore di posizione non locale derivato in questo caso è mostrato essere identico ai corrispondenti operatori introdotti da me ed anche da Kalnay. Inoltre, si discute una possibile reazione tra gli operatori d’impulso lineare ed angolare in questo caso speciale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. (1).
    G. N. Fleming:Phys. Rev. Sect. B,137, 188 (1965).ADSMathSciNetGoogle Scholar
  2. (2).
    M. H. L. Pryce:Proc. R. Soc. London Ser. A,195, 62 (1948).MATHADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    C. Moller:Commun. Dublin Inst. Adv. Studies A, No. 5 (1949).Google Scholar
  4. (4).
    T. D. Newton andE. P. Wigner:Rev. Mod. Phys.,21, 400 (1949).MATHCrossRefADSGoogle Scholar
  5. (5).
    G. N. Fleming:Phys. Rev. Sect. B,139, 963 (1965).ADSGoogle Scholar
  6. (6).
    A. S. Wightman:Rev. Mod. Phys.,34, 845 (1962).CrossRefADSMathSciNetGoogle Scholar
  7. (7).
    S. B. Berger:Lett. Nuovo Cimento,22, 246 (1978).CrossRefGoogle Scholar
  8. (8).
    F. Coester:Phys. Rev.,129, 2816 (1963).MATHCrossRefADSMathSciNetGoogle Scholar
  9. (9).
    A. J. Kalnay:Phys. Rev. D,3, 2357 (1971).CrossRefADSMathSciNetGoogle Scholar
  10. (10).
    F. J. Belinfante:Physica (The Hague),6, 887 (1939).MATHCrossRefADSMathSciNetGoogle Scholar
  11. (11).
    S. B. Berger:Lett. Nuovo Cimento,19, 20 (1977).CrossRefGoogle Scholar
  12. (12).
    S. B. Berger:Lett. Nuovo Cimento,11, 89 (1974).CrossRefMathSciNetGoogle Scholar
  13. (13).
    S. B. Berger:Lett. Nuovo Cimento,14, 265 (1975).CrossRefGoogle Scholar
  14. (14).
    P. A. M. Dirac:Ann. Math.,36, 657 (1935).CrossRefMathSciNetGoogle Scholar
  15. (15).
    R. L. Mallett andG. N. Fleming:J. Math. Phys. (N. Y.),14, 45 (1973).CrossRefADSGoogle Scholar
  16. (16).
    A. Bohm:Boulder Lectures in Theoretical Physics, Vol.9 B (1967), p. 327.Google Scholar
  17. (17).
    R. Prasad:Nuovo Cimento,38, 1921 (1965).MATHCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1980

Authors and Affiliations

  • S. B. Berger
    • 1
  1. 1.McLean

Personalised recommendations