Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 31, Issue 1, pp 129–150 | Cite as

Connection between the electron propagator and the Baker-Johnson function in conformal invariant quantum electrodynamics

  • M. P. Fry
Article

Summary

The single-electron-line electron propagator of massless quantum electrodynamics is shown to be determined by the product of the Baker-Johnson functionF1 and the sumE1 +E2 of coefficients appearing in the first two terms of theC=−1,J=1 part of the Wilson expansion of the productψ(x)\(\bar \psi \)(y) of electron fields. This statement is subject to the restriction thatE1 andE2 are calculated in a special gauge in which massless quantum electrodynamics without electron creation and annihilation is conformal invariant. The possibility of determining the analyticity properties in the coupling constant of the product (E1+E2)F1 from the propagator for an electron in a path-dependent field is discussed.

Свяэь между злектронным пропагатором и функцией Бакера-Джонсона в конформной инвариантной квантовой злектродинамике

Реэюме

Покаэывается, что злектронный пропагатор в квантовой злектродинамике определяется в виде проиэведения функцииF1 Бакера-Джонсона и суммы (E1 +E2) козффициентов, появляюшихся в первых двух членах для частиC=−1,J=1 раэложения Вильсона проиэведенияψ(x)\(\bar \psi \)(y) злектронных полей. Это утверждение справедливо при условии, чтоE1 иE2 вычисляются в специальной калибровке, в которой квантовая злектродинамика беэ рождения и уничтожения злектронов является конформно инвариантной. Обсуждается воэможность определения свойств аналитичности проиэведения (E1 +E2)F1 по констамте свяэи, исходя иэ пропагатора злектрона в поле.

Riassunto

Si mostra che il propagatore elettronico della linea di un solo elettrone dell’elettrodinamica quantistica in assenza di masse è determinato dal prodotto della funzioneF1 di Barker-Johnson per la sommaE1 +E2 dei coefficienti che compaiono nei primi due termini della parte conC=−1 eJ=1 dello sviluppo di Wilson del prodotto ψ(x)\(\bar \psi \)(y) di campi elettronici. Questa affermazione è soggetta alla restrizione cheE1 eE2 siano calcolati in una gauge speciale in cui l’elettrodinamica quantistica in assenza di masse senza creazione e annichilazione di elettroni è conformemente invariante. Si discute la possibilità di determinare le proprietà di analiticità nella costante di accoppiamento del prodotto (E1 +E2)F1 dal propagatore di un elettrone in un campo dipendente dal percorso.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. A. Abdellatif: Ph. D. Thesis, University of Washington, unpublished (1970).Google Scholar
  2. (2).
    K. Johnson: private communication.Google Scholar
  3. (3).
    S. L. Adler:Phys. Rev. D,6, 3445 (1972);7, 3821(E) (1973).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    N. Christ:Phys. Rev. D,9, 946 (1974).CrossRefADSGoogle Scholar
  5. (5).
    J. Ngak-Hua Ng: Ph. D. Thesis, University of Washington, unpublished (1974).Google Scholar
  6. (6).
    H. Schnitzer (Phys. Rev. D,8, 385 (1973)) has discussed the consequences of inversion invariance together with broken translation invariance in this model.CrossRefADSGoogle Scholar
  7. (7).
    M. Baker andK. Johnson:Phys. Rev. D,3, 2541 (1971).CrossRefADSGoogle Scholar
  8. (8).
    S. L. Adler:Phys. Rev. D,5, 3021 (1972);7, 1948(E) (1973).CrossRefADSGoogle Scholar
  9. (9).
    The algebraic structure of\(< 0|T\left( {j_\mu \left( x \right)j_v \left( 0 \right)} \right)|0 > ^{one - electron loop} \) is uniquely determined by conformal symmetry up to the constantF 1 forx≠0. SeeE. J. Schreier:Phys. Rev. D,3, 980 (1971).CrossRefADSGoogle Scholar
  10. (10).
    For a review of work on finite quantum electrodynamics seeS. L. Adler:Phys. Rev. D,5, 3021 (1972);7, 1948(E) (1973);K. Johnson andM. Baker:Phys. Rev. D,8, 1110 (1973);M. P. Fry:Acta Phys. Austriaca, Suppl. 13, 737 (1974).CrossRefADSGoogle Scholar
  11. (11).
    S. L. Adler:Phys. Rev. D,8, 2400 (1973);10, 2399 (1974).MathSciNetCrossRefADSGoogle Scholar
  12. (12).
    For a review of the application of conformal symmetry to quantum field theory seeA. F. Grillo:Riv. Nuovo Cimento,3, 146 (1973);I. T. Todorov:Acta Phys. Austriaca, Suppl. 11, 241 (1973). In the specific case of quantum electrodynamics, see,R. A. Abdellatif: Ph. D. Thesis, University of Washington, unpublished (1970);N. Christ:Phys. Rev. D,9, 946 (1974).CrossRefGoogle Scholar
  13. (13).
    The interpretation of\(B\mu \) as the position four-vector of a scalar field φ of dimension zero defined by\(D_{\mu v}^B (x,y) =< 0|T(A_\mu \left( x \right)A_v \left( y \right)\varphi \left( B \right))|0 > \) has been given byF. Englert:Nuovo Cimento,16 A, 557 (1973).CrossRefADSGoogle Scholar
  14. (14).
    K. Johnson, R. Willey andM. Baker:Phys. Rev.,163, 1699 (1967).CrossRefADSGoogle Scholar
  15. (15).
    The result (1.4b) is not explicitly stated in Abdellatif’s thesis. It is, however, an obvious inference, See especially chap. 3 and 4 and appendix C of ref. (1).Google Scholar
  16. (16).
    K. G. Wilson:Phys. Rev.,179, 1499 (1969).MathSciNetCrossRefADSGoogle Scholar
  17. (17).
    R. Brandt:Ann. of Phys.,52, 122 (1969);Fort. der Phys.,18, 249 (1970).CrossRefADSGoogle Scholar
  18. (18).
    M. Baker andK. Johnson:Phys. Rev. D,3, 2516 (1971);S. L. Adler andW. A. Bardeen:Phys. Rev. D,4, 3045 (1971);6, 734(E) (1972);S. L. Adler:Phys. Rev. D,5, 3021 (1972);7, 1948(E) (1973).CrossRefADSGoogle Scholar
  19. (19).
    R. Jost andJ. Luttinger:Helv. Phys. Acta,23, 201 (1950).MathSciNetMATHGoogle Scholar
  20. (20).
    S. L. Adler (Phys. Rev. D,8, 2400 (1973)) has shown that the perturbation series in α for the single-electron loop vacuum amplitude and 2n-point functions of the Maxwell field have zero radius of convergence when the short-distance singularity in each of their internal photon lines is cut off.MathSciNetCrossRefADSGoogle Scholar
  21. (21).
    P. Federbush andK. Johnson:Phys. Rev.,120, 1926 (1960);R. Jost: inLectures on Field Theory and the Many-Body Problem, edited byE. Caianiello (New York, N. Y., 1961);B. Schroer: Diplomarbeit, Hamburg, unpublished (1958);K. Pohlmeyer:Commun. Math. Phys.,12, 204 (1969).MathSciNetCrossRefADSGoogle Scholar
  22. (23).
    The converse of this, that a zero ofC implies a zero inF 1, has been discussed in another context byF. Englert, J. M. Frère andP. Nicoletopoulos:Nuovo Cimento,19 A, 395 (1974).CrossRefADSGoogle Scholar
  23. (24).
    The presence of a singularity at α=\(\alpha = \alpha _\infty \) in a coefficient of the short-distance expansion of the product\(j_\mu \left( x \right)j_v \)(0) of two electromagnetic current operators in the one-electron loop approximation is suggested by the work ofS. L. Adler, C. G. Callan, D. J. Gross andR. Jackiw:Phys. Rev. D,6, 2982 (1972).CrossRefADSGoogle Scholar
  24. (27).
    K. Johnson: unpublished.Google Scholar
  25. (28).
    I. T. Todorov:Acta Phys. Austriaca, Suppl. 11, 241 (1973);E. J. Schreier:Phys. Rev. D,3, 980 (1971).Google Scholar
  26. (29).
    R. A. Abdellatif: Ph. D. Thesis, University of Washington, unpublished (1970), appendix C.Google Scholar
  27. (31).
    M. P. Fry:Acta Phys. Austriaca,39, 325 (1974).MathSciNetGoogle Scholar
  28. (32).
    M. P. Fry:Acta Phys. Austriaca, Suppl. 13, 737 (1974);Acta Phys. Austriaca,42, 117 (1975).Google Scholar
  29. (33).
    J. L. Rosner:Ann. of Phys.,44, 11 (1967).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1976

Authors and Affiliations

  • M. P. Fry
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingen

Personalised recommendations