Skip to main content
Log in

Connection between the electron propagator and the Baker-Johnson function in conformal invariant quantum electrodynamics

Свяэь между злектронным пропагатором и функцией Бакера-Джонсона в конформной инвариантной квантовой злектродинамике

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The single-electron-line electron propagator of massless quantum electrodynamics is shown to be determined by the product of the Baker-Johnson functionF 1 and the sumE 1 +E 2 of coefficients appearing in the first two terms of theC=−1,J=1 part of the Wilson expansion of the productψ(x)\(\bar \psi \)(y) of electron fields. This statement is subject to the restriction thatE 1 andE 2 are calculated in a special gauge in which massless quantum electrodynamics without electron creation and annihilation is conformal invariant. The possibility of determining the analyticity properties in the coupling constant of the product (E 1+E 2)F 1 from the propagator for an electron in a path-dependent field is discussed.

Riassunto

Si mostra che il propagatore elettronico della linea di un solo elettrone dell’elettrodinamica quantistica in assenza di masse è determinato dal prodotto della funzioneF 1 di Barker-Johnson per la sommaE 1 +E 2 dei coefficienti che compaiono nei primi due termini della parte conC=−1 eJ=1 dello sviluppo di Wilson del prodotto ψ(x)\(\bar \psi \)(y) di campi elettronici. Questa affermazione è soggetta alla restrizione cheE 1 eE 2 siano calcolati in una gauge speciale in cui l’elettrodinamica quantistica in assenza di masse senza creazione e annichilazione di elettroni è conformemente invariante. Si discute la possibilità di determinare le proprietà di analiticità nella costante di accoppiamento del prodotto (E 1 +E 2)F 1 dal propagatore di un elettrone in un campo dipendente dal percorso.

Реэюме

Покаэывается, что злектронный пропагатор в квантовой злектродинамике определяется в виде проиэведения функцииF 1 Бакера-Джонсона и суммы (E 1 +E 2) козффициентов, появляюшихся в первых двух членах для частиC=−1,J=1 раэложения Вильсона проиэведенияψ(x)\(\bar \psi \)(y) злектронных полей. Это утверждение справедливо при условии, чтоE 1 иE 2 вычисляются в специальной калибровке, в которой квантовая злектродинамика беэ рождения и уничтожения злектронов является конформно инвариантной. Обсуждается воэможность определения свойств аналитичности проиэведения (E 1 +E 2)F 1 по констамте свяэи, исходя иэ пропагатора злектрона в поле.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Abdellatif: Ph. D. Thesis, University of Washington, unpublished (1970).

  2. K. Johnson: private communication.

  3. S. L. Adler:Phys. Rev. D,6, 3445 (1972);7, 3821(E) (1973).

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Christ:Phys. Rev. D,9, 946 (1974).

    Article  ADS  Google Scholar 

  5. J. Ngak-Hua Ng: Ph. D. Thesis, University of Washington, unpublished (1974).

  6. H. Schnitzer (Phys. Rev. D,8, 385 (1973)) has discussed the consequences of inversion invariance together with broken translation invariance in this model.

    Article  ADS  Google Scholar 

  7. M. Baker andK. Johnson:Phys. Rev. D,3, 2541 (1971).

    Article  ADS  Google Scholar 

  8. S. L. Adler:Phys. Rev. D,5, 3021 (1972);7, 1948(E) (1973).

    Article  ADS  Google Scholar 

  9. The algebraic structure of\(< 0|T\left( {j_\mu \left( x \right)j_v \left( 0 \right)} \right)|0 > ^{one - electron loop} \) is uniquely determined by conformal symmetry up to the constantF 1 forx≠0. SeeE. J. Schreier:Phys. Rev. D,3, 980 (1971).

    Article  ADS  Google Scholar 

  10. For a review of work on finite quantum electrodynamics seeS. L. Adler:Phys. Rev. D,5, 3021 (1972);7, 1948(E) (1973);K. Johnson andM. Baker:Phys. Rev. D,8, 1110 (1973);M. P. Fry:Acta Phys. Austriaca, Suppl. 13, 737 (1974).

    Article  ADS  Google Scholar 

  11. S. L. Adler:Phys. Rev. D,8, 2400 (1973);10, 2399 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  12. For a review of the application of conformal symmetry to quantum field theory seeA. F. Grillo:Riv. Nuovo Cimento,3, 146 (1973);I. T. Todorov:Acta Phys. Austriaca, Suppl. 11, 241 (1973). In the specific case of quantum electrodynamics, see,R. A. Abdellatif: Ph. D. Thesis, University of Washington, unpublished (1970);N. Christ:Phys. Rev. D,9, 946 (1974).

    Article  Google Scholar 

  13. The interpretation of\(B\mu \) as the position four-vector of a scalar field φ of dimension zero defined by\(D_{\mu v}^B (x,y) =< 0|T(A_\mu \left( x \right)A_v \left( y \right)\varphi \left( B \right))|0 > \) has been given byF. Englert:Nuovo Cimento,16 A, 557 (1973).

    Article  ADS  Google Scholar 

  14. K. Johnson, R. Willey andM. Baker:Phys. Rev.,163, 1699 (1967).

    Article  ADS  Google Scholar 

  15. The result (1.4b) is not explicitly stated in Abdellatif’s thesis. It is, however, an obvious inference, See especially chap. 3 and 4 and appendix C of ref. (1).

  16. K. G. Wilson:Phys. Rev.,179, 1499 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Brandt:Ann. of Phys.,52, 122 (1969);Fort. der Phys.,18, 249 (1970).

    Article  ADS  Google Scholar 

  18. M. Baker andK. Johnson:Phys. Rev. D,3, 2516 (1971);S. L. Adler andW. A. Bardeen:Phys. Rev. D,4, 3045 (1971);6, 734(E) (1972);S. L. Adler:Phys. Rev. D,5, 3021 (1972);7, 1948(E) (1973).

    Article  ADS  Google Scholar 

  19. R. Jost andJ. Luttinger:Helv. Phys. Acta,23, 201 (1950).

    MathSciNet  MATH  Google Scholar 

  20. S. L. Adler (Phys. Rev. D,8, 2400 (1973)) has shown that the perturbation series in α for the single-electron loop vacuum amplitude and 2n-point functions of the Maxwell field have zero radius of convergence when the short-distance singularity in each of their internal photon lines is cut off.

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Federbush andK. Johnson:Phys. Rev.,120, 1926 (1960);R. Jost: inLectures on Field Theory and the Many-Body Problem, edited byE. Caianiello (New York, N. Y., 1961);B. Schroer: Diplomarbeit, Hamburg, unpublished (1958);K. Pohlmeyer:Commun. Math. Phys.,12, 204 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  22. The converse of this, that a zero ofC implies a zero inF 1, has been discussed in another context byF. Englert, J. M. Frère andP. Nicoletopoulos:Nuovo Cimento,19 A, 395 (1974).

    Article  ADS  Google Scholar 

  23. The presence of a singularity at α=\(\alpha = \alpha _\infty \) in a coefficient of the short-distance expansion of the product\(j_\mu \left( x \right)j_v \)(0) of two electromagnetic current operators in the one-electron loop approximation is suggested by the work ofS. L. Adler, C. G. Callan, D. J. Gross andR. Jackiw:Phys. Rev. D,6, 2982 (1972).

    Article  ADS  Google Scholar 

  24. K. Johnson: unpublished.

  25. I. T. Todorov:Acta Phys. Austriaca, Suppl. 11, 241 (1973);E. J. Schreier:Phys. Rev. D,3, 980 (1971).

    Google Scholar 

  26. R. A. Abdellatif: Ph. D. Thesis, University of Washington, unpublished (1970), appendix C.

  27. M. P. Fry:Acta Phys. Austriaca,39, 325 (1974).

    MathSciNet  Google Scholar 

  28. M. P. Fry:Acta Phys. Austriaca, Suppl. 13, 737 (1974);Acta Phys. Austriaca,42, 117 (1975).

    Google Scholar 

  29. J. L. Rosner:Ann. of Phys.,44, 11 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by « Fonds zur Förderung der wissenschaftlichen Forschung in Österreich », project No. 1905 and by the Alexander von Humboldt-Stiftung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fry, M.P. Connection between the electron propagator and the Baker-Johnson function in conformal invariant quantum electrodynamics. Nuov Cim A 31, 129–150 (1976). https://doi.org/10.1007/BF02729928

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729928

Navigation