Vacuum suction aid for microlens array formation using LIGA-like process

  • Ruey Fang Shyu
  • Hsiharng Yang
Original Article


Microlens array fabrication using a vacuum suction process combed with the LIGA-like process is presented in this paper. The circular patterned array was designed on a photomask and transferred onto a substrate using photoresist patterning. Electroforming technology was used to convert the photoresist patterns into a metallic molds with an array of nozzles. Liquid JSR resist was spun onto the substrate joining the metallic mold to remove microlens array under vacuum conditions. The exposure energy and vacuum pressure were essential parameters in the microlens array manufacturing process. Microlens arrays with 50 µm in diameter at −50 cm-Hg vacuum pressure and 100 µm in diameter at −60 cm-Hg vacuum pressure were successfully formed. The produced microlens arrays presented smooth measured surface profiles coincident with the optical lens geometry.


Electroforming Microlens array Molding Vacuum suction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ezell B (2001) Making microlens backlights grow up. Inf Display 5:42–45Google Scholar
  2. 2.
    Motamedi ME (1994) Micro-opto-electro-mechanical system. Opt Eng 33(11):3505–3517CrossRefGoogle Scholar
  3. 3.
    Sinzinger S, Jahns J (1999) Microoptics. WILEY-VCH, Weinheim, pp 85–103, 1999.Google Scholar
  4. 4.
    Popovic ZD, Sprague RA, Connell GAN (1988) Technique for the monolithic fabrication of microlens arrays. Appl Opt 27:1281–1284CrossRefGoogle Scholar
  5. 5.
    Hutley MC (1990) Optical techniques for the generation of microlens arrays. J Modern Opt 37:253–265CrossRefGoogle Scholar
  6. 6.
    Stern M, Jay TR (1994) Dry etching for coherent refractive microlens arrays. Opt Eng 33(11):3547–3550CrossRefGoogle Scholar
  7. 7.
    Matamedi ME, Griswold MP, Knowlden RE (1991) Silicon microlenses for enhanced optical coupling to silicon focal planes. Proc SPIE 1544:22–32CrossRefGoogle Scholar
  8. 8.
    Gale MT, Rossi M, Pedersen J, Schutz H (1994) Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. Opt Eng 22(11):3556–3566CrossRefGoogle Scholar
  9. 9.
    Zimmer K, Hirsch D, Bigl F (1996) Excimer laser machining for the fabrication of analogous microstructures. Appl Surf Sci 96–98: 425–429CrossRefGoogle Scholar
  10. 10.
    Cox WR, Chen T, Hayes D (2001) Micro-optics fabrication by ink-jet printing. Opt Photonics News 12(6):32–35CrossRefGoogle Scholar
  11. 11.
    Gottert J, Mohr J (1991) Characterization of micro-optical components fabricated by deep-etch x-ray lithography. SPIE: Micro-Optics II 1506:170–178Google Scholar
  12. 12.
    Lee S-K, Lee K-C, Lee SS (2002) A simple method for microlens fabrication by the modified LIGA process. J Micromech Microeng 12:334–340CrossRefGoogle Scholar
  13. 13.
    Yang H, Chou M-C, Yang A, Mu C-K, Shyu RF (1999) Realization of fabricating microlens array in mass production. Proc SPIE 3739:178–185CrossRefGoogle Scholar
  14. 14.
    Yang H, Pan C-T, Chou M-C (2001) Ultra-fine machining tool/molds by LIGA technology. J Micromech Microeng 11:94–99CrossRefGoogle Scholar
  15. 15.
    Lin C-P, Yang H, Chao C-K (2003) A new microlens array fabrication method using UV proximity printing. J Micromech Microeng 13(5):748–757CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  1. 1.Department of Mechanical Manufacturing EngineeringNational Formosa UniversityHuweiTaiwan 632
  2. 2.Institute of Precision EngineeringNational Chung-Hsing UniversityTaiwan

Personalised recommendations