Fixturing analysis methods for calculating the contact load distribution and the valid clamping regions in machining processes

  • H. T. Sánchez
  • M. Estrems
  • F. Faura
Original Article


In the present work, two analysis methods for analysing fixturing systems in machining processes are presented in order to determine the most suitable calmping regions. The first involves calculating the contact load at the fixture-workpiece interface using a simple and direct mathematical tool, which simplifies the deformation minimisation problem. The second method starts from the contact load data obtained and solves several cases in which the clamping position varies. From these data, it is possible to ascertain the interpolating equations, where the load contact is defined as a function of the clamping position. Then, the border curves which limit the valid clamping regions are calculated by imposing two fixturing conditions on the interpolating equations.


Contact mechanics Fixtures Machine tool 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoffman EG (1996) Jig and fixture design. Delmar, New YorkGoogle Scholar
  2. 2.
    Lee SH, Cutkosky MR (1991) Fixture planning with friction. Trans ASME, J Eng Ind 113(3):320–327Google Scholar
  3. 3.
    Jeng SL, Chen LG, Chieng WH (1995) Analysis of minimum clamping force. Int J Mach Tools Manuf 35(9):1213–1224CrossRefGoogle Scholar
  4. 4.
    Lee JD, Haynes LS (1987) Finite element analysis of flexible fixturing system. Trans ASME, J Eng Ind 109(2):134–139Google Scholar
  5. 5.
    Menassa RJ, DeVries WR (1991) Optimization methods applied to selecting support positions in fixture design. Trans ASME, J Eng Ind 113(4):412–418Google Scholar
  6. 6.
    Rearick MR, Hu SJ, Wu SM (1993) Optimal fixture design for deformable sheet metal workpieces. Trans NAMRI/SME 21:407–412Google Scholar
  7. 7.
    De Meter EC (1998) Fast support layout optimization. Int J Mach Tools Manuf 38(10–11):1221–1239CrossRefGoogle Scholar
  8. 8.
    Li B, Melkote SN (1999) An elastic contact model for the prediction of workpiece-fixture contact forces in clamping. J Manuf Sci Eng 121(3):485–493Google Scholar
  9. 9.
    Li B, Melkote SN (1999) Improved workpiece location accuracy through fixture layout optimization. Int J Mach Tools Manuf 39(6): 871–883CrossRefGoogle Scholar
  10. 10.
    Li B, Melkote SN (2001) Fixture clamping force optimisation and its impact on workpiece location accuracy. Int J Adv Manuf Technol 17(2):104–113CrossRefGoogle Scholar
  11. 11.
    Li B, Melkote SN (2001) Optimal fixture design accounting for the effect of workpiece dynamics. Int J Adv Manuf Technol 18(10): 701–707CrossRefGoogle Scholar
  12. 12.
    Wang YF, Wong YS, Fuh JYH (1999) Off-line modelling and planning of optimal clamping forces for an intelligent fixturing system. Int J Mach Tools Manuf 39(2):253–271CrossRefGoogle Scholar
  13. 13.
    De Meter EC, Xie W, Choudhuri S, Vallapuzha S, Trethewey MW (2001) A model to predict minimum required clamp pre-loads in light of fixture-workpiece compliance. Int J Mach Tools Manuf 41(7):1031–1054CrossRefGoogle Scholar
  14. 14.
    Sánchez HT, Estrems M, Hernández JJ, Faura F (2004) Desarrollo de un método semianalítico para el estudio del contacto entre los elementos de fijación y la pieza en procesos de mecanizado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 20(1):33–54MATHGoogle Scholar
  15. 15.
    Choudhuri SA, De Meter EC (1999) Tolerance Analysis of Machining Fixture Locators. Trans ASME, J Manuf Sci Eng 121(2):273–281Google Scholar
  16. 16.
    Lin EE, Zhang HC (2001) Theoretical tolerance stackup analysis based on tolerance zone analysis. Int J Adv Manuf Technol 17(4): 257–262CrossRefGoogle Scholar
  17. 17.
    Hurtado JF, Melkote SN (2001) Improved algorithm for tolerance-based stiffness optimization of machining fixtures. Trans ASME, J Manuf Sci Eng 123(4):720–730CrossRefGoogle Scholar
  18. 18.
    Estrems M, Sánchez HT, Faura F (2003) Influence of fixtures on dimensional accuracy in machining processes. Int J Adv Manuf Technol 21(5):384–390CrossRefGoogle Scholar
  19. 19.
    Jonhson KL (1987) Contact Mechanics. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Cante JC, Oliver J, Oller S (1998) Simulación numérica de procesos de compactación de pulvimateriales. Parte 1: Modelo constitutivo, de contacto y fricción. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 14(1):67–99MathSciNetGoogle Scholar
  21. 21.
    Estrems M, Faura F, Pedrero JI (2001) Método para determinación de la distribución de carga entre dos cuerpos con varios puntos de contacto. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 17(4):387–401MATHGoogle Scholar
  22. 22.
    Zienkiewicz OC, Taylor RL (1994) El Método de los Elementos Finitos. Volume 1: Formulación Básica y Problemas Lineales. McGraw-Hill, MadridGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  1. 1.Departamento de Ingeniería de Materiales y Fabricación, ETS Ingeniería IndustrialUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations