Skip to main content
Log in

Kinetic and thermodynamic study of a chemically modified highly active xylanase fromScopulariopsis sp

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 23 April 2008

Abstract

The amino groups of purified least acidic xylanase (LAX) isomer and carboxyl groups of purified highly acidic xylanase (HAX) isomer fromScopulariopsis sp. were chemically modified, resulting in charge neutralization and reversal. Modification of the second amino group was accompanied by the complete loss of enzyme activity in both the absence and presence of xylose. Multiple alignments of family 10 and 11 xylanases revealed that there is a pair of fully conserved Lys residues only in family 10 members. Xylanase structures from family 10 members showed that one of the conserved Lys residues is found near the active-site cleft that makes an H-bond with the substrate. The LAX and HAX isoenzymes in which one amino and three to four carboxyl groups were modified were subjected to kinetic and thermodynamic characterization. There were no differences in pH optima between the native and modified HAX, but there was a broadening of pH optimum toward the alkaline range for charge-neutralized LAX and a double pH optimum for charge-reversed LAX. TheV max/K m of both modified LAX and HAX decreased relative to the native species. The thermodynamics of xylan hydrolysis showed that the decrease in the catalytic activity of modified LAX enzymes was entropically driven. When compared with native enzyme, the thermostabilities of modified LAX enzymes increased in the presence and decreased in the absence of substrate. The thermodynamics of kinetic stability for modified LAX enzymes revealed that this increase in thermolability was owing to the decrease in ΔH# with a concomitant increase in ΔS# compared with native LAX. The thermostabilities of all the modified HAX species decreased except that of charge-neutralized HAX, whose half-life significantly increased in 50% (v/v) aqueous dioxan. These results suggest that the altered properties of the modified enzymes were a result of the conformational changes brought about by chemical modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HAX:

native highly acidic xylanase

HAX-D:

HAX whose thermostability is determined in 50% (v/v) aqueous dioxan

HAX-N:

HAX activated by EDC in presence of methylamine hydrochloride (charge neutralized, − → neutral)

HAX-N-D:

HAX-N whose thermostability is determined in 50% (v/v) aqueous dioxan

HAX-R:

HAX activated by EDC in presence of ethylenediamine dihydrochloride (charge reversed, − → +)

LAX:

native least acidic xylanse

LAX-N:

acetylated LAX (charge neutralized, + → neutral)

LAX-R:

succinylated LAX (charge reversed, + → −)

References

  1. Jeffries, T. W. (1996),Curr. Opin. Biotechnol. 7, 337–342.

    Article  CAS  Google Scholar 

  2. Prade, R. A. (1995),Biotech. Genet. Eng. Rev. 13, 100–131.

    Google Scholar 

  3. Collins, T., Gerday, C., and Feller, G. (2005),FEMS Microbiol. Rev. 29, 3–23.

    Article  CAS  Google Scholar 

  4. Godfrey, T. and West, S. (2001), inIndustrial Enzymology, Godfrey, T. and West, S., eds., Macmillan, London, pp. 458–459.

    Google Scholar 

  5. Torronen, A., Harkki, A., and Rouvinen, J. (1994),EMBO J. 11, 2493–2501.

    Google Scholar 

  6. Keskar, S. S., Srinivasan, M. C., and Deshpande, V. V. (1990),Biochem. J. 261, 49–55.

    Google Scholar 

  7. Bray, M. R. and Clarke, A. J. (1990),Biochem. J. 270, 91–96.

    CAS  Google Scholar 

  8. Chauthaiwale, J. and Rao, M. (1994),Biochim. Biophys. Acta 16, 164–168.

    Google Scholar 

  9. Nath, D. and Rao, M. (2001),Enzyme Microb. Technol. 28, 397–403.

    Article  CAS  Google Scholar 

  10. George, S. P. and Rao, M.B. (2001),Eur. J. Biochem. 268, 2881–2888.

    Article  CAS  Google Scholar 

  11. Roberge, M., Shareck, F., Morosoli, R., Kluepfel, D., and Dupont, C. (1997),Biochemistry 25, 769–775.

    Google Scholar 

  12. Roberge, M., Shareck, F., Morosoli, R., Kluepfel, D., and Dupont, C. (1998),Protein Eng. 11, 399–404.

    Article  CAS  Google Scholar 

  13. George, S. P., Ahmad, A., and Rao, M. B. (2001),Biochem. Biophys. Res. Commun. 282, 48–54.

    Article  CAS  Google Scholar 

  14. Afzal, A. J., Ali, S., Latif, F., Rajoka, M. I., and Siddiqui, K. S. (2005),Appl. Biochem. Biotechnol. 120, 51–70.

    Article  CAS  Google Scholar 

  15. Wood, W. A. and Bhat, K. M. (1988), in Wood, W. A. and Kellogg, S. T., eds.Methods Enzymol. 160, 87–112.

    CAS  Google Scholar 

  16. Coelho, G. D. and Carmona, E. C. (2003),J. Basic Microbiol. 43, 269–277.

    Article  CAS  Google Scholar 

  17. Afzal, A. J., Bokhari, S. A., Ahmad, W., Rashid, M. H., Rajoka, M. I., and Siddiqui, K. S. (2000),Biotechnol. Lett. 22, 957–960.

    Article  CAS  Google Scholar 

  18. Rashid, M. H., Najmus Saqib, A. A., Rajoka, M. I., and Siddiqui, K. S. (1997),Biotechnol. Techniques 11, 245–247.

    Article  CAS  Google Scholar 

  19. Klapper, M. H. and Klotz, I. M. (1972), in Hirs, C. H. W. and Timasheff, S. N., eds.Methods Enzymol. 25, 531–536.

    CAS  Google Scholar 

  20. Riordan, J. F. and Vallee, B. L. (1972), in Hirs, C. H. W. and Timasheff, S. N., eds.Methods Enzymol. 25, 494–499.

    CAS  Google Scholar 

  21. Lundblad, R. L. (1995), inTechniques in Protein Modification, CRC Press, Boca Raton, FL: pp. 120–129.

    Google Scholar 

  22. Hoare, D. G. and Koshland, D. E. (1967),J. Biol. Chem. 242, 2447–2453.

    CAS  Google Scholar 

  23. Carraway, K. L. and Koshland, D. E. Jr. (1972), in Hirs, C. H. W. and Timasheff, S. N., eds.Methods Enzymol.25, 616–623.

    CAS  Google Scholar 

  24. Siddiqui, K. S., Loviny-Anderton, T., Rangarajan, M., and Hartley, B. S. (1993),Biochem. J. 296, 685–691.

    CAS  Google Scholar 

  25. Rashid, M. H. and Siddiqui, K. S. (1998),Biotechnol. Appl. Biochem. 27, 231–237.

    CAS  Google Scholar 

  26. Munch, O. and Tritsch, D. (1990),Biochim. Biophys. Acta 1041, 111–116.

    CAS  Google Scholar 

  27. Siddiqui, K. S., Azhar, M. J., Rashid, M. H., and Rajoka, M. I. (1997),Folia Microb.4, 312–318.

    Google Scholar 

  28. Lienhard, G. E. (1973),Science 180, 149–154.

    Article  CAS  Google Scholar 

  29. Gonzalez-Villasenor, L. I. and Powers, D. A. (1986),J. Biol. Chem. 25, 11,471–11,477.

    Google Scholar 

  30. Fersht, A. (1985), inEnzyme Structure and Mechanism, W. H. Freeman and Co, New York: pp. 311–346.

    Google Scholar 

  31. Rashid, M. H. and Siddiqui, K. S. (1998),Process Biochem. 33, 109–115.

    Article  CAS  Google Scholar 

  32. Siddiqui, K. S., Najmus-Saqib, A. A., Rashid, M. H., and Rajoka, M. I. (1997),Biotechnol. Lett. 19, 325–329.

    Article  CAS  Google Scholar 

  33. Siddiqui, K. S., Shemsi, A. M., Anwar, M. A., Rashid, M. H., and Rajoka, M. I. (1999),Enzyme Microb. Technol 24, 599–608.

    Article  CAS  Google Scholar 

  34. Notredame, C., Higgins, D., and Heringa, J. (2000),J. Mol. Biol. 302, 205–217.

    Article  CAS  Google Scholar 

  35. Siddiqui, K. S., Poljak, A., and Cavicchioli, R. (2004),Cell. Mol. Biol. 50, 657–667.

    CAS  Google Scholar 

  36. Siddiqui, K. S. and Cavicchioli, R. (2006),Annu. Rev. Biochem. 75, 403–433.

    Article  CAS  Google Scholar 

  37. Chauthaiwal, J. and Rao, M. (1994),Biochim. Biophys. Acta 1204, 164–168.

    Google Scholar 

  38. Ko, E. P., Akatsuka, H., Moriyama, H., et al. (1992),Biochem. J. 288, 117–121.

    CAS  Google Scholar 

  39. Torronen, A. and Rouvinen, J. (1995),Biochemistry 34, 847–856.

    Article  CAS  Google Scholar 

  40. Nath, D. and Rao, M. (1998),Biochem. Biophys. Res. Commun. 249, 207–212.

    Article  CAS  Google Scholar 

  41. Schmidt, A., Schlacher, A., Steiner, W., Schwab, H., and Kratky, C. (1998),Protein Sci. 7, 2081–2088.

    Article  CAS  Google Scholar 

  42. Charnock, S. J., Lakey, J. H., Virden, R., et al. (1997),J. Biol. Chem. 272, 2942–2951.

    Article  CAS  Google Scholar 

  43. Moreau, A., Shareck, F., Kluepfel, D., and Morosoli, R. (1994),Enzyme Microb. Technol. 16, 420–424.

    Article  CAS  Google Scholar 

  44. Kang, M. K., Maeng, P. J., and Rhee, Y. A. (1996),Appl. Environ. Microbiol. 62, 3480–3482.

    CAS  Google Scholar 

  45. Muilu, J., Torronen, A., Perakla, M., and Rouvinen, J. (1998),Proteins: Struct. Function Genet. 31, 434–444.

    Article  CAS  Google Scholar 

  46. Torronen, A. and Rouvinen, J. (1997),J. Biotechnol. 57, 137–139.

    Article  CAS  Google Scholar 

  47. Roberge, M., Dupont, C., Morosoli, R., Shareck, F., and Kluepfel, D. (1997),Protein Eng. 10, 399–403.

    Article  CAS  Google Scholar 

  48. Inoue, M., Yamada, H., Hashimoto, Y., et al. (1992),Biochemistry 31, 8816–8821.

    Article  CAS  Google Scholar 

  49. Arase, A., Yomo, T., Urabe, I., Hata, Y., Katsube, Y., and Okada, H. (1993),FEBS Lett. 316, 123–127.

    Article  CAS  Google Scholar 

  50. Clarke, J. and Fersht, A. (1993),Biochemistry 32, 4322–4329.

    Article  CAS  Google Scholar 

  51. Harris, G. W., Jenkin, J. A., Connerton, I., and Pickergill, R. W. (1996),Acta Crystallogr. D 52, 393–401.

    Article  CAS  Google Scholar 

  52. Harris, W. G., Pickersgill, W. G., Connerton, I., Debeire, P., Touzel, J., Breton, C., and Serge, P. (1997),Proteins: Struct. Function Genet. 29, 77–86.

    Article  CAS  Google Scholar 

  53. Torronen, A., Mach, R. L., Messner, R., Gonzalez, R., Kalkkinen, N., Harkki, A., and Kubicek, C. P. (1992),Biotechnology 10, 1461–1465.

    Article  CAS  Google Scholar 

  54. Mozhaev, V. V. and Martinek, K. (1984),Enzyme Microb. Technol. 6, 50–59.

    Article  CAS  Google Scholar 

  55. Urabe, I., Yamamoto, M., Yamada, Y., and Okada, H. (1978),Biochim. Biophys. Acta 524, 435–441.

    CAS  Google Scholar 

  56. Yutani, K., Ogasahara, K., Tsujita, T., and Sugino, Y. (1987),Proc. Natl. Acad. Sci. USA 84, 441–4444.

    Article  Google Scholar 

  57. Vieille, C. and Zeikus, J. G. (1996),TIBTECH 14, 183–190.

    CAS  Google Scholar 

  58. Privalov, P. L. and Gill, S. J. (1988), in Anfinsen, C. B., ed.Adv. Protein Chem. 39, 191–234.

    Article  CAS  Google Scholar 

  59. Kallis, J. T., Nyberg, K., Sali, D., and Fersht, A. R. (1998),Nature 333, 784–786.

    Article  Google Scholar 

  60. Querol, E. and Parrilla, A. (1987),Enzyme Microb. Technol. 9, 238–244.

    Article  CAS  Google Scholar 

  61. Gorman, L. A. and Dordick, J. S. (1992),Biotechnol. Bioeng. 39, 392–397.

    Article  CAS  Google Scholar 

  62. Shoichet, B. K., Baase, W. A., Kuroki, R., and Matthews, B. W. (1995),Proc. Natl. Acad. Sci. USA 92, 452–456.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ahmed Jawaard Afzal.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12010-008-8157-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Existence of an essential amino group., Afzal, A.J., Bokhari, S.A. et al. Kinetic and thermodynamic study of a chemically modified highly active xylanase fromScopulariopsis sp. Appl Biochem Biotechnol 141, 273–297 (2007). https://doi.org/10.1007/BF02729068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729068

Index Entries

Navigation