Skip to main content
Log in

Statistical optimization of conditions for protease production fromBacillus sp. and its scale-up in a bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A statistical approach, response surface methodology (RSM), was used to study the production of extracellular protease fromBacillus sp., which has properties of immense industrial importance. The most influential parameters for protease production obtained through the method of testing the parameters one at a time were starch, soybean meal, CaCl2, agitation rate, and inoculum density. This method resulted in the production of 2543 U/mL of protease in 48 h fromBacillus sp. Based on these results, face-centered central composite design falling under RSM was employed to further enhance protease activity. The interactive effect of the most influential parameters resulted in a 1.50-fold increase in protease production, yielding 3746 U/mL in 48 h. Analysis of variance showed the adequacy of the model and verification experiments confirmed its validity. On subsequent scale-up in a 30-L bioreactor using conditions optimized through RSM, 3978 U/mL of protease was produced in 18 h. This clearly indicated that the model remained valid even on a large scale. RSM is a quick process for optimization of a large number of variables and provides profound insight into the interactive effect of various parameters involved in protease production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godfrey, T. and West, S. (1996), inIndustrial Enzymology, 2nd Edition (Godfrey, T. and West, S., eds.) Macmillan, UK: pp. 1–8.

  2. Rao, M. B., Tanksale, A. M., Ghatke, M. S., and Deshpande, V. V. (1998), inMicrobiology Molecular Biology Reviews,62, 597–635.

    CAS  Google Scholar 

  3. Takac, S., Elmas, S., Çalik, P., and Özdamar, T. H. (2000),J. Chem. Technol. Biotechnol. 75, 491–499.

    Article  CAS  Google Scholar 

  4. Kumar, C. G. and Takagi, H. (1998),Biotechnol. Adv. 17, 561–594.

    Article  Google Scholar 

  5. Adinarayana, K. and Ellaiah, P. (2002),J. Pharm. Sci. 5, 272–278.

    CAS  Google Scholar 

  6. Masse, F. W. J. L. and Tilburg, R. V. (1983),J. Am. Oil Chem. Soc. 60, 1672–1675.

    Article  Google Scholar 

  7. Prakasham, R. S., Rao, C. S., Rao, R. S., and Sharma, P. N. (2005),Biotechnol. Prog. 21(5), 1380–1388.

    Article  CAS  Google Scholar 

  8. Joo, H. S., Kumar, C. G., Park, G. C., Kim, K. M., Paik, S. R., and Chang, C. S. (2002),Process Biochem. 38, 155–159.

    Article  CAS  Google Scholar 

  9. Manachini, P. L. and Fortina, M. G. (1998),Biotechnol. Lett. 20, 565–568.

    Article  CAS  Google Scholar 

  10. Jacobs, M. F. (1995),Gene 152, 67–74.

    Article  Google Scholar 

  11. Yang, J. K., Shih, I. L., Tzeng, Y. M., and Wang, S. L. (2000),Enzyme Microb. Technol. 26, 406–413.

    Article  CAS  Google Scholar 

  12. Ito, S., Kobayashi, T., Ara, K., Ozaki, K., Kawai, S., and Hatada, Y. (1998),Extremophile 2, 185–190.

    Article  CAS  Google Scholar 

  13. Beg, Q. K., Sahai, V., and Gupta, R. (2003),Process Biochem. 38, 1–7.

    Google Scholar 

  14. Kaur, S., Vohra, R. M., Kapoor, M., Beg, Q. K., and Hoondal, G. S. (2001),J. Gen. Microbiol. 128, 845–851.

    Google Scholar 

  15. McKeller, R. C. and Cholete, H. (1984),Appl. Microbiol. Biotechnol. 47, 1224–1227.

    Google Scholar 

  16. Puri, S., Beg, Q. K., and Gupta, R. (2002),Curr. Microbiol. 44, 286–290.

    Article  CAS  Google Scholar 

  17. Nehete, P. N., Shah, V. D., and Kothari, R. M. (1985),Biotechnol. Lett. 7, 413–418.

    Article  CAS  Google Scholar 

  18. Oberoi, R., Beg, Q. K., Puri, S., Saxena, R. K., and Gupta, R. (2001),World J. Microbiol. Biotechnol. 60, 381–395.

    Google Scholar 

  19. Razak, N. A., Samad, M. Y. A., Basri, M., Yunus, W. M. Z. W., Ampon, K., and Salleh, A. B. (1994),World J. Microbiol. Biotechnol. 10, 260–263.

    Article  CAS  Google Scholar 

  20. Saxena, S. and Saxena, R. K. (2004),Biotechnol. Appl. Biochem. 39, 99–106.

    Article  CAS  Google Scholar 

  21. Vohra, A. and Satanarayana, T. (2002),Process Biochem. 37, 999–1004.

    Article  CAS  Google Scholar 

  22. Kalil, S. J., Maugeri, F., and Rodrigues, M. I. (2000),Process Biochem. 35, 539–550.

    Article  CAS  Google Scholar 

  23. Haaland, P. D. (1989), inExperimental Design in Biotechnology, (Halland P.D., ed) Marcel Dekker, New York, pp. 1–18.

    Google Scholar 

  24. Krishna, S. H., Manohar, B., Divakar, S., Prapulla, S. G., and Karanth, N. G. (2000),Enzyme Microb. Technol. 26, 131–136.

    Article  Google Scholar 

  25. Isar, J., Agarwal, L., Saran, S., and Saxena, R. K. (2006),Bioresour. Technol., 97, 1443–1448.

    Article  CAS  Google Scholar 

  26. Meyers, S. P. and Ahearn, D. G. (1977),Mycologia 69, 646–651.

    Article  CAS  Google Scholar 

  27. Chauhan, B. and Gupta, R. (2004),Process Biochem. 39, 2115–2122.

    Article  CAS  Google Scholar 

  28. Burkert, J. F., Maureri, M. F., and Rodrigues, M. I. (2004),Bioresour. Technol. 91, 77–84.

    Article  CAS  Google Scholar 

  29. Moon, S. H. and Parulekar, S. J. (1991),Biotechnol. Bioeng. 37, 467–483.

    Article  CAS  Google Scholar 

  30. Chu, I. M., Lee, C., and Li, T. S. (1992),Enzyme Microb. Technol. 14, 755–761.

    Article  CAS  Google Scholar 

  31. Gupta, R., Beg, Q. K., Khan, S., and Chauhan, B. (2002),Appl. Microbiol. Biotechnol. 60, 381–395.

    Article  CAS  Google Scholar 

  32. Jang, J. W., Jun, H. K., Kim, E. K., Jang, W. H., Kang, J. H., and Yoo, O. J. (2001),Biotechnol. Appl. Biochem. 34, 81–84.

    Article  CAS  Google Scholar 

  33. Hameed, A., Keshavarz, T., and Evabs, C. S. (1999),J. Chem. Technol. Biotechnol. 74, 5–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Kumar Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saran, S., Isar, J. & Saxena, R.K. Statistical optimization of conditions for protease production fromBacillus sp. and its scale-up in a bioreactor. Appl Biochem Biotechnol 141, 229–239 (2007). https://doi.org/10.1007/BF02729064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729064

Index Entries

Navigation