Skip to main content
Log in

Cell immobilization and xylitol production using sugarcane bagasse as raw material

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse pretreated by three different procedures (with 2% [v/v] polyethyleneimine (PEI), with 2% [w/v] NaOH, or with a sequence of NaOH and PEI) was used as cell immobilization carrier for xylitol production byCandida guilliermondii yeast. Fermentations using these pretreated carriers were performed in semidefined medium and in a hydrolysate medium produced from sugarcane bagasse hemicellulose. Sugarcane bagasse pretreated with NaOH was the best carrier obtained with respect to immobilization efficiency, because it was able to immobilize a major quantity of cells (0.30 g of cells/g of bagasse). Fermentation in semidefined medium using the NaOH-pretreated carrier attained a high efficiency of xylose-to-xylitol bioconversion (96% of the theoretical value). From hydrolysate medium, the bioconversion efficiency was lower (63%), probably owing to the presence of other substances in the medium that caused an inadequate mass transfer to the cells. In this fermentation medium, better results with relation to xylitol production were obtained by using PEI-pretreated carrier (xylose-to-xylitol bioconversion of 81% of the theoretical and volumetric productivity of 0.43 g/[L·h]). The results showed that sugarcane bagasse is a low-cost material with great potential for use as cell immobilization carrier in the fermentative process for xylitol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pandey, A., Socol, C. R., Nigam, P., and Socol, V. (2000),Bioresour. Technol. 74, 69–80.

    Article  CAS  Google Scholar 

  2. Mussatto, S. I. and Roberto, I. C. (2002),Braz. J. Pharm. Sci. 38, 401–413.

    CAS  Google Scholar 

  3. Winkelhausen, E. and Kusmanova, S. (1998),J. Ferment. Bioeng. 86, 1–14.

    Article  CAS  Google Scholar 

  4. Carvalho, W., Silva, S. S., Converti, A., et al. (2002),Appl. Biochem. Biotechnol. 98/100, 489–496.

    Article  Google Scholar 

  5. Santos, J. C., Converti, A., Carvalho, W., Mussatto, S. I., and Silva, S. S. (2005),Process Biochem. 40, 113–118.

    Article  CAS  Google Scholar 

  6. Santos, J. C., Mussatto, S. I., Dragone, G., Converti, A., and Silva, S. S. (2005),Biochem. Eng. J. 23, 1–9.

    Article  CAS  Google Scholar 

  7. Santos, J. C., Pinto, I. R. G., Carvalho, W., Mancilha, I. M., Felipe, M. G. A., and Silva, S. S. (2005),Appl. Biochem. Biotechnol. 121, 673–683.

    Article  Google Scholar 

  8. Cohen, Y. (2001),Bioresour. Technol. 77, 257–274.

    Article  CAS  Google Scholar 

  9. Corcoran, E. (1985), inTopics in Enzyme and Fermentation Biotechnology, vol. 10, Wiseman, A., ed., Ellis Horwood, Chichester, UK, pp. 12–50.

    Google Scholar 

  10. Park, J. K. and Chang, H. N. (2000),Biotechnol. Adv. 18, 303–319.

    Article  CAS  Google Scholar 

  11. Ramakrishna, S. V. and Prakasham, R. S. (1999),Curr. Sci. 77, 87–100.

    CAS  Google Scholar 

  12. Akin, C. (1987),Biotechnol. Genet. Eng. 5, 319–367.

    CAS  Google Scholar 

  13. Almeida, C., Brànyik, T., Moradas-Ferreira, P., and Teixeira, J. (2003),J. Biosci. Bioeng. 96, 513–518.

    Article  CAS  Google Scholar 

  14. Bahulekar, R., Ayyangar, N. R., and Ponrathnam, S. (1991),Enzyme Microb. Technol. 13, 858–868.

    Article  CAS  Google Scholar 

  15. Alves, L. A., Felipe, M. G. A., Silva, J. B. A., Silva, S. S., and Prata, A. M. R. (1998),Appl. Biochem. Biotechnol. 70/72, 89–98.

    Article  Google Scholar 

  16. Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., and Lee, H. (1988),J. Ind. Microbiol. 3, 241–251.

    Article  CAS  Google Scholar 

  17. Roberto, I., C. (2006)Carbohydr. Polym. 64, 22–28.

    Article  CAS  Google Scholar 

  18. Brànyik, T., Vicente, A., Cruz, J. M., and Teixeira, J. (2002),J. I. Brewing 108, 410–415.

    Google Scholar 

  19. Mishra, S., Webster, P., and Davis, M. E. (2004),Eur. J. Cell. Biol. 83, 97–111.

    Article  CAS  Google Scholar 

  20. Wilcocks, K. L. and Smart, K. A. (1995),FEMS Microbiol. Lett. 134, 293–297.

    Article  CAS  Google Scholar 

  21. Mussatto, S. I. and Roberto, I. C. (2003),J. Appl. Microbiol. 95, 331–337.

    Article  CAS  Google Scholar 

  22. Silva, S. S., Ribeiro, J. D., Felipe, M. G. A., and Vitolo, M. (1997),Appl. Biochem. Biotechnol. 63/64, 557–563.

    Google Scholar 

  23. Mussatto, S. I. and Roberto, I. C. (2004),Bioresour. Technol. 93, 1–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange I. Mussatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, S.S., Mussatto, S.I., Santos, J.C. et al. Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biochem Biotechnol 141, 215–227 (2007). https://doi.org/10.1007/BF02729063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729063

Index Entries

Navigation