Skip to main content
Log in

High-level expression of acidic partner-mediated antimicrobial peptide from tandem genes inEscherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel strategy for constructing multiple joined genes of acidic partner-mediated antimicrobial peptide is described. This strategy allows the expression of antimicrobial peptide byEscherichia coli in a stable form and with high yield. Cecropin A (1–8)-melittin (1–10) (CAME) hybrid peptide was selected as a model of antimicrobial peptide. An acidic fragment from magainin intervening sequence was fused to the antimicrobial peptide as a partner to neutralize the lethal effects on the host cells. Multiple copies of the fusion peptide gene were tandemly linked and cloned into the expression vector pET21a. Multimers were expressed at high levels, reaching up to 36% of total cell proteins, and expression levels were proportional to the degree of multimerization. The fusion proteins were mainly expressed as inclusion bodies, probably owing to cysteine residues in the multimers. The target CAME peptide was obtained by cleaving the multimers with cyanogen bromide and purified by cation-exchange chromatography. Recombinant CAME peptide showed strong antimicrobial activities against both Gram-negative and -positive bacteria. These results might provide an efficient solution for high-level expression of various kinds of antimicrobial peptides that are toxic to the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelley, K. J. (1996),Nat. Biotechnol.,14, 587–590.

    Article  CAS  Google Scholar 

  2. Zasloff, M. (1987),Proc. Natl. Acad. Sci. USA 84, 5449–5453.

    Article  CAS  Google Scholar 

  3. Zasloff, M. (1992),Curr. Opin. Immunol. 4, 3–7.

    Article  CAS  Google Scholar 

  4. Shai, Y. and Oren, Z. (2001),Peptides 22, 1629–1641.

    Article  CAS  Google Scholar 

  5. Piers, K. L., Brown, M. H., and Hancock, R. E. W. (1993),Gene 134, 7–13.

    Article  CAS  Google Scholar 

  6. Callaway, J. E., Lai, J., Haselbeck, B., Baltaian, M., Bonnesen, S. P., Weickmann, J., Wilcox, G., and Lei, S. P. (1993),Antimicrob. Agents. Chemother. 37, 1614–1619.

    CAS  Google Scholar 

  7. Wade, D., Andreu, D., Mitchell, S. A., Silveira, A. M., Boman, H. G. (1992),Int. J. Pept. Protein Res. 40, 429–436.

    Article  CAS  Google Scholar 

  8. Chan, R. Y. K., Palfree, R. G. E., Congote, L. F., and Solomon, S. (1994),DNA Cell Biol. 13, 311–319.

    Article  CAS  Google Scholar 

  9. Lennick, M., Haynes, J. R., and Shen, S. H. (1987),Gene 61, 103–112.

    Article  CAS  Google Scholar 

  10. Lee, J. H., Minn, I., Park, C. B., and Kim, S. C. (1998),Protein Expr. Purif. 12, 53–60.

    Article  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989),Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  12. Schagger, H. and von Jagow, G. (1987),Anal. Biochem. 166, 368–379.

    Article  CAS  Google Scholar 

  13. Dathe, M., Nikolenko, H., Meyer, J., Beyermann, M., and Bienert, M. (2001),FEBS Lett. 501, 146–150.

    Article  CAS  Google Scholar 

  14. Nutkins, J. C. and Williams, D. H. (1989),Eur. J. Biochem. 181, 97–102.

    Article  CAS  Google Scholar 

  15. Michaelson, D., Rayner, J., Couto, M., and Ganz, T. (1992),J. Leukoc. Biol. 51, 634–639.

    CAS  Google Scholar 

  16. Liu, L. and Ganz, T. (1995),Blood 85, 1095–1103.

    CAS  Google Scholar 

  17. Yang, Y. H., Zheng, G. G., Li, G., Zhang, X. J., Cao, Z. Y., Rao, Q., and Wu, K. F. (2004),Protein Expr. Purif. 37, 229–235.

    Article  CAS  Google Scholar 

  18. Zhang, L., Falla, T., Wu, M., Fidai, S., Burian, J., Kay, W., and Hancock, R. E. (1998),Biochem. Biophys. Res. Commun. 247, 674–680.

    Article  CAS  Google Scholar 

  19. Shen, S. H. (1984),Proc. Natl. Acad. Sci. USA 81, 4627–4631.

    Article  CAS  Google Scholar 

  20. Park, C. J., Lee, J. H., Hong, S. S., Lee, H. S., and Kim, S.C. (1998),Appl. Microbiol. Biotechnol. 50, 71–76.

    Article  CAS  Google Scholar 

  21. Li, C., Ng, M. L. P., Zhu, Y., Ho, B., and Ding, J. L. (2003),Protein Eng. 16, 629–633.

    Article  CAS  Google Scholar 

  22. Lee, J. H., Kim, M. S., Cho, J. H., and Kim, S. C. (2002),Appl. Microbiol. Biotechnol. 58, 790–796.

    Article  CAS  Google Scholar 

  23. Lee, J. H., Kim, J. H., Hwang, S. W., Lee, W. J., Yoon, H. K., Lee, H. S., and Hong, S. S. (2000),Biochem. Biophys. Res. Commun. 277, 575–580.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ye Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YQ., Cai, JY. High-level expression of acidic partner-mediated antimicrobial peptide from tandem genes inEscherichia coli . Appl Biochem Biotechnol 141, 203–213 (2007). https://doi.org/10.1007/BF02729062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729062

Index Entries

Navigation