Advertisement

Optimization of keratinase production and enzyme activity using response surface methodology with streptomyces sp7

  • Radhika Tatineni
  • Kiran Kumar Doddapaneni
  • Ravi Chandra Potumarthi
  • Lakshmi Narasu Mangamoori
Article

Abstract

A two-step response surface methodology (RSM) study was conducted for the optimization of keratinase production and enzyme activity from poultry feather byStreptomyces sp7. Initially different combinations of salts were screened for maximal production of keratinase at a constant pH of 6.5 and feather meal concentration of 5 g/L. A combination of K2HPO4, KH2PO4, and NaCl gave a maximum yield of keratinase (70.9 U/mL) production. In the first step of the RSM study, the selected five variables (feather meal, K2HPO4, KH2PO4, NaCl, and pH) were optimized by a 25 full-factorial rotatable central composite design (CCD) that resulted in 95 U/mL of keratinase production. The results of analysis of variance and regression of a second-order model showed that the linear effects of feather meal concentration (p<0.005) and NaCl (p<0.029) and the interactive effects of all variables were more significant and that values of the quadratic effects of feather meal (p<1.72e-5), K2HPO4 (p<4.731e-6), KH2PO4 (p<1.01e-10), and pH (p 7.63e-7) were more significant than the linear and interactive effects of the process variables. In the second step, a 23 rotatable full-factorial CCD and response surface analysis were used for the selection of optimal process parameters (pH, temperature, and rpm) for keratinase enzyme activity. These optima were pH 11.0, 45°C, and 300 rpm.

Index Entries

Poultry feather keratinase response surface methodology central composite design 

References

  1. 1.
    Bertsch, A. and Coello, N. (2005),Bioresour. Technol. 96, 1703–1708.CrossRefGoogle Scholar
  2. 2.
    Gousterova, A., Braikova, D., Goshev, I., Christov, P., Tishinov, K., and Vasileva-Tonkova, E. (2005),Lett. Appl. Microbiol.,40, 335–340.CrossRefGoogle Scholar
  3. 3.
    Suntornsuk, W. and Suntornsuk, L. (2003),Bioresour. Technol. 86, 239–243.CrossRefGoogle Scholar
  4. 4.
    Friedrich, J., Gradisar, H., Mandin, D., and Chaumont, J. P. (1999),Lett. Appl. Microbiol. 28, 127–130.CrossRefGoogle Scholar
  5. 5.
    Wawrzkiewicz, K., Wolski, T., and Lobarzewski, J. (1991),Mycopathologia 114, 1–8.CrossRefGoogle Scholar
  6. 6.
    Bressollier, P., Letourneau, F., Urdaci, M., and Verneuil, B. (1999),Appl. Environ. Microbiol. 65, 2570–2576.Google Scholar
  7. 7.
    Bockle, B., Galunsky, B., and Muller, R. (1995),Appl. Environ. Microbiol. 61, 3705–3710.Google Scholar
  8. 8.
    Chitte, R. R., Nalawade, V. K., and Dey, S. (1999),Lett. Appl. Microbiol. 28, 131–136.CrossRefGoogle Scholar
  9. 9.
    Sangali, S. and Brandelli, A. (2000),J. Appl. Microbiol. 89, 735–743.CrossRefGoogle Scholar
  10. 10.
    Thys, R. C. S., Lucas, F. S., Riffel, A., Heeb, P., and Brandelli, A. (2004),Lett. Appl. Microbiol. 39, 181–186.CrossRefGoogle Scholar
  11. 11.
    Lin, X., Lee, C. G., Casale, E. S., and Shih, J. C. H. (1992),Appl. Environ. Microbiol. 58, 3271–3275.Google Scholar
  12. 12.
    Haaland, P. D. (1989),Experimental Design in Biotechnology, Marcel Dekker, New York.Google Scholar
  13. 13.
    Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), inStatistics for Experimenters, Wiley, New York, pp. 291–334.Google Scholar
  14. 14.
    Akhnazarova, S. and Kafarov, V. (1982),Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow.Google Scholar
  15. 15.
    Cochran, W. G. and Cox, G. M. (1957), inExperimental Designs, 2nd ed., Wiley, New York, pp. 346–354.Google Scholar
  16. 16.
    Box, G. E. P. and Wilson, K. B. (1951),J. R. Stat. Soc. (Ser. B) 13, 1–45.Google Scholar
  17. 17.
    Qasim, K. B., Vikram, S., and Rani, G. (2003),Process Biochem. 39, 203–209.CrossRefGoogle Scholar
  18. 18.
    Senthilkumar, S. R., Ashokkumar, B., Chandra Raj, K., and Gunasekaran, P. (2005),Bioresour. Technol. 96, 1380–1386.CrossRefGoogle Scholar
  19. 19.
    Himabindu, M., Ravichandra, P., Vishalakshi K., and Annapurna, J. (2006),Appl. Biochem. Biotechnol.,134(2), 143–154.CrossRefGoogle Scholar
  20. 20.
    Adinarayana, K. and Suren, S. (2005),Biochem. Eng. J. 27, 179–190.CrossRefGoogle Scholar
  21. 21.
    Hsuan-Liang, L., YannWen, L., and Yang-Chu, C. (2004),Process Biochem. 39, 1953–1961.CrossRefGoogle Scholar
  22. 22.
    Letourneau, F., Soussotte, V., Bressoullier, P., Branland, P., and Verneuil, B. (1998),Lett. Appl. Microbiol. 26, 77–80.CrossRefGoogle Scholar
  23. 23.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biochem. 193, 265–275.Google Scholar
  24. 24.
    Ramnani, P. and Gupta, R. (2004),Biotechnol. Appl. Biochem. 40, 191–196.CrossRefGoogle Scholar
  25. 25.
    Myers, R. H. and Montgomery, D. C. (1995),Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 1st ed., Wiley Interscience, New York.Google Scholar
  26. 26.
    Khuri, A. I. and Cornell, J. A. (1987),Response Surfaces: Design and Analysis, Marcel Dekker, New York.Google Scholar
  27. 27.
    Bernal, C., Vidal, L., Valdivieso, E., and Coello, N. (2003),World J. Microbiol. Biotechnol. 19, 255–261.CrossRefGoogle Scholar
  28. 28.
    Friedrich, A. B. and Antranikian, G. (1996),Appl. Environ. Microbiol. 62, 2875–2882.Google Scholar
  29. 29.
    Riessen, S. and Antranikian, G. (2001),Extremophiles 5, 399–408.CrossRefGoogle Scholar
  30. 30.
    Suntornsuk, W., Tongjun, J., Oyama, H., Onnim, P., Ratanakanokchai, K., Kusamran, T., and Kohei O. (2005),World J. Microb. Biot. 21, 1111–1117.CrossRefGoogle Scholar
  31. 31.
    Mohamedin, A. H. (1999),Int. Biodeter. Biodegr. 43, 13–21.CrossRefGoogle Scholar
  32. 32.
    Riffel, A., Lucas, F., Heeb, P., and Brandelli, A. (2003),Arch. Microbiol. 179, 258–265.Google Scholar
  33. 33.
    Gessesse, A., Kaul, R. H., Berhanu, A., and Gashe, B. M. (2003),Enzyme Microb. Technol. 32, 519–524.CrossRefGoogle Scholar
  34. 34.
    Wang, J. J., Greenhut, W. B., and Shih, J. C. H. (2005),World. J. Microb. Biot. 16, 253–255.Google Scholar
  35. 35.
    Cheng, S. W., Hu, H. M., Shen, S. W., Takagi, H., Asono, M., and Tsai, Y. C. (1995),Biosci. Biotechnol. Biochem. 59, 2239–2243.CrossRefGoogle Scholar
  36. 36.
    Lee, H., Suh, D. B., Hwang, J. H., and Suh, H. J. (2002),Appl. Biochem. Biotechnol. 97, 123–133.CrossRefGoogle Scholar
  37. 37.
    Towatana, N. H., Painupong, A., and Suntinanalert, P. (1999),J. Biosci. Bioeng. 87, 581–587.CrossRefGoogle Scholar
  38. 38.
    Manachini, P. L., Fortina, M. G., and Parini, C. (1988),Appl. Microbiol. Biot. 28, 409–413.CrossRefGoogle Scholar
  39. 39.
    Pissuwan, D. and Suntornsuk, W. (2001),Kasetsart J. (Nat. Sci.) 35, 171–178.Google Scholar
  40. 40.
    Takami, H., Nakamura, S., Aono, R., and Horikoshi, K. (1992),Biosci. Biotechnol. Biochem. 56, 1667–1669.CrossRefGoogle Scholar
  41. 41.
    Takami, H., Nogi, Y., and Horikoshi, K. (1999),Extremophiles 3, 293–296.CrossRefGoogle Scholar
  42. 42.
    Anbua, P., Gopinatha, S. C. B., Hilda, A., Lakshmi Priya, T., and Annadurai, G. (2005),Enzyme. Microb. Technol. 36, 639–647.CrossRefGoogle Scholar
  43. 43.
    Gradisar, H., Kern, S., and Friedrich, J. (2000),Appl. Microbiol. Biot. 53, 196–200.CrossRefGoogle Scholar
  44. 44.
    Szabo, I., Benedek, A., Szabo, M. I., and Baradas, G. (2000),World J. Microb. Biot. 16, 253–255.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2007

Authors and Affiliations

  • Radhika Tatineni
    • 1
  • Kiran Kumar Doddapaneni
    • 1
  • Ravi Chandra Potumarthi
    • 2
  • Lakshmi Narasu Mangamoori
    • 1
  1. 1.Center for Biotechnology, Institute of Science and TechnologyJNT UniversityHyderabadIndia
  2. 2.Biochemical and Environmental Engineering CenterIndian Institute of Chemical TechnologyHyderabad

Personalised recommendations