Skip to main content
Log in

Optimization of keratinase production and enzyme activity using response surface methodology with streptomyces sp7

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A two-step response surface methodology (RSM) study was conducted for the optimization of keratinase production and enzyme activity from poultry feather byStreptomyces sp7. Initially different combinations of salts were screened for maximal production of keratinase at a constant pH of 6.5 and feather meal concentration of 5 g/L. A combination of K2HPO4, KH2PO4, and NaCl gave a maximum yield of keratinase (70.9 U/mL) production. In the first step of the RSM study, the selected five variables (feather meal, K2HPO4, KH2PO4, NaCl, and pH) were optimized by a 25 full-factorial rotatable central composite design (CCD) that resulted in 95 U/mL of keratinase production. The results of analysis of variance and regression of a second-order model showed that the linear effects of feather meal concentration (p<0.005) and NaCl (p<0.029) and the interactive effects of all variables were more significant and that values of the quadratic effects of feather meal (p<1.72e-5), K2HPO4 (p<4.731e-6), KH2PO4 (p<1.01e-10), and pH (p 7.63e-7) were more significant than the linear and interactive effects of the process variables. In the second step, a 23 rotatable full-factorial CCD and response surface analysis were used for the selection of optimal process parameters (pH, temperature, and rpm) for keratinase enzyme activity. These optima were pH 11.0, 45°C, and 300 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertsch, A. and Coello, N. (2005),Bioresour. Technol. 96, 1703–1708.

    Article  CAS  Google Scholar 

  2. Gousterova, A., Braikova, D., Goshev, I., Christov, P., Tishinov, K., and Vasileva-Tonkova, E. (2005),Lett. Appl. Microbiol.,40, 335–340.

    Article  CAS  Google Scholar 

  3. Suntornsuk, W. and Suntornsuk, L. (2003),Bioresour. Technol. 86, 239–243.

    Article  CAS  Google Scholar 

  4. Friedrich, J., Gradisar, H., Mandin, D., and Chaumont, J. P. (1999),Lett. Appl. Microbiol. 28, 127–130.

    Article  CAS  Google Scholar 

  5. Wawrzkiewicz, K., Wolski, T., and Lobarzewski, J. (1991),Mycopathologia 114, 1–8.

    Article  CAS  Google Scholar 

  6. Bressollier, P., Letourneau, F., Urdaci, M., and Verneuil, B. (1999),Appl. Environ. Microbiol. 65, 2570–2576.

    CAS  Google Scholar 

  7. Bockle, B., Galunsky, B., and Muller, R. (1995),Appl. Environ. Microbiol. 61, 3705–3710.

    CAS  Google Scholar 

  8. Chitte, R. R., Nalawade, V. K., and Dey, S. (1999),Lett. Appl. Microbiol. 28, 131–136.

    Article  CAS  Google Scholar 

  9. Sangali, S. and Brandelli, A. (2000),J. Appl. Microbiol. 89, 735–743.

    Article  CAS  Google Scholar 

  10. Thys, R. C. S., Lucas, F. S., Riffel, A., Heeb, P., and Brandelli, A. (2004),Lett. Appl. Microbiol. 39, 181–186.

    Article  CAS  Google Scholar 

  11. Lin, X., Lee, C. G., Casale, E. S., and Shih, J. C. H. (1992),Appl. Environ. Microbiol. 58, 3271–3275.

    CAS  Google Scholar 

  12. Haaland, P. D. (1989),Experimental Design in Biotechnology, Marcel Dekker, New York.

    Google Scholar 

  13. Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), inStatistics for Experimenters, Wiley, New York, pp. 291–334.

    Google Scholar 

  14. Akhnazarova, S. and Kafarov, V. (1982),Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow.

    Google Scholar 

  15. Cochran, W. G. and Cox, G. M. (1957), inExperimental Designs, 2nd ed., Wiley, New York, pp. 346–354.

    Google Scholar 

  16. Box, G. E. P. and Wilson, K. B. (1951),J. R. Stat. Soc. (Ser. B) 13, 1–45.

    Google Scholar 

  17. Qasim, K. B., Vikram, S., and Rani, G. (2003),Process Biochem. 39, 203–209.

    Article  CAS  Google Scholar 

  18. Senthilkumar, S. R., Ashokkumar, B., Chandra Raj, K., and Gunasekaran, P. (2005),Bioresour. Technol. 96, 1380–1386.

    Article  CAS  Google Scholar 

  19. Himabindu, M., Ravichandra, P., Vishalakshi K., and Annapurna, J. (2006),Appl. Biochem. Biotechnol.,134(2), 143–154.

    Article  CAS  Google Scholar 

  20. Adinarayana, K. and Suren, S. (2005),Biochem. Eng. J. 27, 179–190.

    Article  CAS  Google Scholar 

  21. Hsuan-Liang, L., YannWen, L., and Yang-Chu, C. (2004),Process Biochem. 39, 1953–1961.

    Article  CAS  Google Scholar 

  22. Letourneau, F., Soussotte, V., Bressoullier, P., Branland, P., and Verneuil, B. (1998),Lett. Appl. Microbiol. 26, 77–80.

    Article  CAS  Google Scholar 

  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biochem. 193, 265–275.

    CAS  Google Scholar 

  24. Ramnani, P. and Gupta, R. (2004),Biotechnol. Appl. Biochem. 40, 191–196.

    Article  CAS  Google Scholar 

  25. Myers, R. H. and Montgomery, D. C. (1995),Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 1st ed., Wiley Interscience, New York.

    Google Scholar 

  26. Khuri, A. I. and Cornell, J. A. (1987),Response Surfaces: Design and Analysis, Marcel Dekker, New York.

    Google Scholar 

  27. Bernal, C., Vidal, L., Valdivieso, E., and Coello, N. (2003),World J. Microbiol. Biotechnol. 19, 255–261.

    Article  CAS  Google Scholar 

  28. Friedrich, A. B. and Antranikian, G. (1996),Appl. Environ. Microbiol. 62, 2875–2882.

    CAS  Google Scholar 

  29. Riessen, S. and Antranikian, G. (2001),Extremophiles 5, 399–408.

    Article  CAS  Google Scholar 

  30. Suntornsuk, W., Tongjun, J., Oyama, H., Onnim, P., Ratanakanokchai, K., Kusamran, T., and Kohei O. (2005),World J. Microb. Biot. 21, 1111–1117.

    Article  CAS  Google Scholar 

  31. Mohamedin, A. H. (1999),Int. Biodeter. Biodegr. 43, 13–21.

    Article  CAS  Google Scholar 

  32. Riffel, A., Lucas, F., Heeb, P., and Brandelli, A. (2003),Arch. Microbiol. 179, 258–265.

    CAS  Google Scholar 

  33. Gessesse, A., Kaul, R. H., Berhanu, A., and Gashe, B. M. (2003),Enzyme Microb. Technol. 32, 519–524.

    Article  CAS  Google Scholar 

  34. Wang, J. J., Greenhut, W. B., and Shih, J. C. H. (2005),World. J. Microb. Biot. 16, 253–255.

    Google Scholar 

  35. Cheng, S. W., Hu, H. M., Shen, S. W., Takagi, H., Asono, M., and Tsai, Y. C. (1995),Biosci. Biotechnol. Biochem. 59, 2239–2243.

    Article  CAS  Google Scholar 

  36. Lee, H., Suh, D. B., Hwang, J. H., and Suh, H. J. (2002),Appl. Biochem. Biotechnol. 97, 123–133.

    Article  CAS  Google Scholar 

  37. Towatana, N. H., Painupong, A., and Suntinanalert, P. (1999),J. Biosci. Bioeng. 87, 581–587.

    Article  Google Scholar 

  38. Manachini, P. L., Fortina, M. G., and Parini, C. (1988),Appl. Microbiol. Biot. 28, 409–413.

    Article  CAS  Google Scholar 

  39. Pissuwan, D. and Suntornsuk, W. (2001),Kasetsart J. (Nat. Sci.) 35, 171–178.

    CAS  Google Scholar 

  40. Takami, H., Nakamura, S., Aono, R., and Horikoshi, K. (1992),Biosci. Biotechnol. Biochem. 56, 1667–1669.

    Article  CAS  Google Scholar 

  41. Takami, H., Nogi, Y., and Horikoshi, K. (1999),Extremophiles 3, 293–296.

    Article  CAS  Google Scholar 

  42. Anbua, P., Gopinatha, S. C. B., Hilda, A., Lakshmi Priya, T., and Annadurai, G. (2005),Enzyme. Microb. Technol. 36, 639–647.

    Article  CAS  Google Scholar 

  43. Gradisar, H., Kern, S., and Friedrich, J. (2000),Appl. Microbiol. Biot. 53, 196–200.

    Article  CAS  Google Scholar 

  44. Szabo, I., Benedek, A., Szabo, M. I., and Baradas, G. (2000),World J. Microb. Biot. 16, 253–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Narasu Mangamoori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatineni, R., Doddapaneni, K.K., Potumarthi, R.C. et al. Optimization of keratinase production and enzyme activity using response surface methodology with streptomyces sp7. Appl Biochem Biotechnol 141, 187–201 (2007). https://doi.org/10.1007/BF02729061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02729061

Index Entries

Navigation