Journal of Genetics

, Volume 85, Issue 2, pp 107–116 | Cite as

Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris)

  • Wenping Zhang
  • Zhihe Zhang
  • Fujun Shen
  • Rong Hou
  • Xiaoping Lv
  • Bisong Yue
Research Article

Abstract

Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) ofPanthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8–17 million years ago in the tiger and 4.6–16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular ‘fossils’ that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.

Keywords

tiger D-loop Numts evolution (NADH-5translocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J.et al. 1981 Sequence and organization of the human mitochondrial genome.Nature 290, 457–465.PubMedCrossRefGoogle Scholar
  2. Ankel-Simons F. and Cummins J. M. 1996 Misconception about mitochondria and mammalian fertilization: Implications for theories on human evolution.Proc. Natl. Acad. Sci. USA 93, 13859–13863.PubMedCrossRefGoogle Scholar
  3. Avise J. C. 1994Molecular markers, natural history and evolution. Chapman and Hall, New York.Google Scholar
  4. Bensasson D., Zhang D. X., Hartl D. L. and Hewitt G. M. 2001 Mitochondrial pseudogenes: evolution’s misplaced witnesses.Trends Ecol. Evol. 16, 314–321.PubMedCrossRefGoogle Scholar
  5. Blanchard J. L. and Schmidt G. W. 1995 Pervasive migration of organellar DNA to the nucleus in plants.J. Mol. Evol. 41, 397–406.PubMedCrossRefGoogle Scholar
  6. Campbell C. L. and Thorsness P. E. 1998 Escape of mitochondrial DNA to the nucleus inyme1 yeast is mediated by vacuolardependent turnover of abnormal mitochondrial compartments.J. Cell Sci. 11, 2455–2464.Google Scholar
  7. Cracraft J., Feinstein J., Vaughn J. and Helm-Bychowski K. 1998 Sorting out tigers (Panthera tigris): mitochondrial sequences, nuclear inserts, systematics, and conservation genetics.Anim. Conserv. 1, 139–150.CrossRefGoogle Scholar
  8. Cummins J. M., Wakayama T. and Yanagimachi R. 1997 Fate of microinjected spermatid mitochondria in the mouse oocyte and embryo.Zygote 5, 301–308.PubMedCrossRefGoogle Scholar
  9. DeWoody J. A., Chesser R. K. and Baker R. J. 1999 A translocated mitochondrial cytochromeb pseudogene in voles (Rodentia:Microtus).J. Mol. Evol. 48, 380–382.PubMedCrossRefGoogle Scholar
  10. Eyre-Walker A. and Awadalla P. 2001 Does human mtDNA recombine?J. Mol. Evol. 53, 430–435.PubMedCrossRefGoogle Scholar
  11. Gellissen G. and Michaelis G. 1987 Gene transfer: mitochondria to nucleus.Ann. N. Y. Acad. Sci. 503, 391–401.PubMedCrossRefGoogle Scholar
  12. Holland M. M. and Parsons T. J. 1999 Mitochondrial DNA sequence analysis-validation and use for forensic casework.Forensic Sci. Rev. 11, 22–50.Google Scholar
  13. Jae-Heup K., Eizirik E., O’Brien S. J. and Johnson W.E. 2001 Structure and patterns of sequence variation in the mitochondrial DNA control region of the great cats.Mitochondrion 1, 279–292.PubMedCrossRefGoogle Scholar
  14. Johnson W. E. and O’Brien S. J. 1997 Phylogenetic reconstruction of the Felidae using 16S rRNA andNADH-5 mitochondrial genes.J. Mol. Evol. 44 (suppl. 1), S98-S116.PubMedCrossRefGoogle Scholar
  15. Johnson W. E., Dratch P. A., Martenson J. S. and O’Brien S. J. 1996 Resolution of recent radiations within three evolutionary lineages of Felidae using mitochondrial restriction fragment length polymorphism variation.J. Mamm. Evol. 3, 97–120.CrossRefGoogle Scholar
  16. Kumar S., Tamura K., Jakobsen I. and Nei M. 2001 MEGA: molecular evolutionary genetics analysis. Ver2.0.Bioinformatics 17, 1244–1245.PubMedCrossRefGoogle Scholar
  17. Lopez J. V., Yuhki N., Masuda R., Modi W and O’Brien S. J. 1994Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat.J. Mol. Evol. 39, 174–190.PubMedGoogle Scholar
  18. Lopez J. V., Cevario S. and O’Brien S. J. 1996 Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome.Genomics 33, 229–246.PubMedCrossRefGoogle Scholar
  19. Lopez J. V., Culver M., Stephens J. C., Johnson W. E. and O’Brien S. J. 1997 Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals.Mol. Biol. Evol. 14, 277–286.PubMedGoogle Scholar
  20. Lu P., Zhang X., Lou S., Xu H. and Cheng Y 1998 Studying on allozyme of the Siberian tiger and the South China tiger. InA studying on South China tiger. pp. 156–159 (in Chinese).Google Scholar
  21. Naylor G. J., Collins P. and Brown W. M. 1995 Hydrophobicity and phylogeny.Nature 373, 565–566.PubMedCrossRefGoogle Scholar
  22. Seidensticker J. 1986 Large carnivores and the consequences of habitat insularization: Ecology and conservation of tigers in Indonesia and Bangladesh. In:Cats of the world: biology, conservation and management (ed. S. D. Miller and D. D. Everett), pp. 1–41. National Wildlife Federation, Washington.Google Scholar
  23. Sorenson M. D., and Fleischer R. C. 1996 Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus.Proc. Natl. Acad. Sci. USA 93, 15239–15243.PubMedCrossRefGoogle Scholar
  24. Sunnucks P. D. and Hales F. 1996 Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genusSitobion (Hemiptera: Aphididae).Mol. Biol. Evol. 13, 510–524.PubMedGoogle Scholar
  25. Tan B. 1990A systematic list of the mammals, pp. 379–380. Medicine Science and Technology Press (in Chinese).Google Scholar
  26. Wallace D. C. 1995 Mitochondrial DNA variation in human evolution, degenerative disease and aging.Am. J. Hum. Genet. 57, 201–223.PubMedGoogle Scholar
  27. Wallace D. C., Stugard C., Murdock D., Schurr T. and Brown M. D. 1997 Ancient mtDNA sequences in the human nuclear genome: A potential source of errors in identifying pathogenic mutations.Proc. Natl. Acad. Sci. USA 94, 14900–14905.PubMedCrossRefGoogle Scholar
  28. Woischnik M. and Moraes C. T. 2002 Pattern of organization of human mitochondrial pseudogenes in the nuclear genome.Genome Res. 12, 885–893.PubMedCrossRefGoogle Scholar
  29. Wu P., Zhou K., Wang Y., Huan G. and Xu L. 1998 Studying the Siberian tiger and the South China tiger mtDNA polymorphism by RFLP and PCR-RFLP. InA studying on South China tiger, pp. 151–155 (in Chinese).Google Scholar
  30. Xu Y. 2001 Tiger (Panthera tigris) microsatellite polymorphisms and their application to the management of captive population. Doctoral paper of Northeast Forestry University, Harbin, China (in Chinese).Google Scholar
  31. Zhang D. X. and Hewitt G. M. 1996 Highly conserved nuclear copies of the mitochondrial control region in the desert locustSchistocerca gregaria: some implications for population studies.Mol Ecol. 5, 295–300.PubMedCrossRefGoogle Scholar
  32. Zhang Y.P. and Shi L. M. 1989 Mitochondrial DNA polymorphism in five species of the genusMacaca.Chinese J. Genet. 16, 325.Google Scholar
  33. Zhang X., Cheng Y., Zhu H. and Huang G. 1998 Comparing studying on chromosome of the Siberian tiger and the South China tiger. InA studying on South China tiger, pp. 160–164 (in Chinese).Google Scholar
  34. Zlschler H., Geisert H., von Haeseler A. and PÄÄbo S. 1995 A nuclear ‘fossil’of the mitochondrial D-loop and the origin of modern humans.Nature 378, 489–492.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • Wenping Zhang
    • 1
    • 3
  • Zhihe Zhang
    • 2
  • Fujun Shen
    • 2
  • Rong Hou
    • 2
  • Xiaoping Lv
    • 4
  • Bisong Yue
    • 1
  1. 1.Key Laboratory of Bioresource and Ecoenvironment (Ministry of Education), College of Life ScienceSichuan UniversityChengdu, SichuanChina
  2. 2.Key Laboratory for Reproduction and Conservation Genetics of Endangered Wildlife of Sichuan ProvinceChengdu Research Base of Giant Panda BreedingChengdu, SichuanChina
  3. 3.College of ScienceHonghe UniversityMengzi, YunnanChina
  4. 4.CITES OfficeChina

Personalised recommendations