Journal of Genetics

, Volume 85, Issue 2, pp 93–97 | Cite as

Physics and the origins of molecular biology

  • Robin Holliday


Bohr, Delbrück and Schrödinger were physicists who had important influences on biology in the second half of the twentieth century. They thought that future studies of the gene might reveal new principles or paradoxes, analogous to the wave/particle paradox of light propagation, or even new physical laws. This stimulated several physicists to enter the field of biology. Delbrück founded the bacteriophage group which provided one of the roots of molecular biology. Another was X-ray crystallography which led to the discovery of DNA structure. The strength and success of molecular biology came from the many interactions between geneticists, physicists, chemists and biochemists. It was also characterized by a powerful combination of theoretical and experimental approaches.


physics genes genetics DNA What is life? 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beadle G. W. and Tatum E. L. 1941 Genetic control of biochemical pathways inNeurospora.Proc. Natl. Acad. Sci. USA 27, 499–506.PubMedCrossRefGoogle Scholar
  2. Benzer S. 1966 Adventures in the rII region. InPhage and the origins of molecular biology (ed. J. Cairns, G. S. Stent and J. D. Watson), pp. 157–165. Cold Spring Harbor Laboratory of Quantitative Biology, New York.Google Scholar
  3. Cairns J. 1962 Proof that the replication of DNA involves separation of the strands.Nature 194, 1274.CrossRefGoogle Scholar
  4. Cairns J., Stent G. S. and Watson J. D. (ed.) 1966Phage and the origins of molecular biology. Cold Spring Harbor Laboratory of Quantitative Biology, New York.Google Scholar
  5. Crick F. 1966Of molecules and men. University of Washington Press, Seattle.Google Scholar
  6. Crick F. 1988What mad pursuit. Basic Books, New York.Google Scholar
  7. Delbrück M. 1966 A physicist looks at biology. InPhage and the origins of molecular biology (ed. J. Cairns, G. S. Stent and J. D. Watson), pp. 9–22. Cold Spring Harbor Laboratory of Quantitative Biology, New York. (Reprinted fromTransactions of the Connecticut Academy of Arts and Sciences (1949)38, 173–190)Google Scholar
  8. Delbrück M. 1970 A physicist’s renewed look at biology: 20 years later.Science 168, 1312–1315.PubMedCrossRefGoogle Scholar
  9. Delbrück M. 1986Mind from matter. Blackwell Scientific, Oxford.Google Scholar
  10. Dronamraju K. R. 1999 Erwin Schrödinger and the origins of molecular biology.Genetics 153, 1071–1076.PubMedGoogle Scholar
  11. Hayes W 1982 M. L. H. Delbrück.Biogr. Mem. Fellows R. Soc. 28, 59–90.Google Scholar
  12. Hershey A. D. and Chase M. 1952 Independent functions of viral proteins and nucleic acid in growth of bacteriophage.J. Gen. Physiol. 36, 39–56.PubMedCrossRefGoogle Scholar
  13. Jacob F 1974The logic of living systems. Allen Lane, London.Google Scholar
  14. Luria S. E. and Human M. L. 1952 A nonhereditary host-induced variation of bacterial viruses.J. Bacteriol. 64, 557–569.PubMedGoogle Scholar
  15. Medvedev Z. A. 1969The rise and fall of T. D. Lysenko. Columbia University Press, New York.Google Scholar
  16. Medvedev Z. A. 1982 N. W. Timofeeff-Ressovsky.Genetics 100, 1–5.Google Scholar
  17. Meselson M. and Stahl F. W. 1958 The replication of DNA inEscherichia coli.Proc. Natl. Acad. Sci. USA 44, 671–682.PubMedCrossRefGoogle Scholar
  18. Meselson M., Stahl F. W. and Vinograd J. 1957 Equilibrium sedimentation of macromolecules in density gradients.Proc. Natl. Acad. Sci. USA 43, 581–588.PubMedCrossRefGoogle Scholar
  19. Perutz M. F. 1987 Physics and the riddle of life.Nature 326, 555–558.PubMedCrossRefGoogle Scholar
  20. Ratner V. A. 2001 Nikolay Vladimirovich Timofeeff-Ressovsky (1900–1981): twin of the century of genetics.Genetics 158, 933–939.PubMedGoogle Scholar
  21. Schrödinger E. 1944What is life?. Cambridge University Press, Cambridge.Google Scholar
  22. Stent G. S. 1966 Introduction: waiting for the paradox. InPhage and the origins of molecular biology (ed. J. Cairns, G. S. Stent and J. D. Watson), pp. 3–8. Cold Spring Harbor Laboratory of Quantitative Biology, New York.Google Scholar
  23. Symonds N. 1986 What is life?: Schrödinger’s influence on biology.Q. Rev. Biol. 61, 221–226.PubMedCrossRefGoogle Scholar
  24. Symonds N. 1987 SchrödingerWhat is life?.Nature 327, 663–664.CrossRefGoogle Scholar
  25. Symonds N. 1988 Schrödinger and Delbrück: their status in biology.Trends Biochem. Sci. 13, 232–234.PubMedCrossRefGoogle Scholar
  26. Taylor J. H., Woods P. S. and Hughes W. L. 1957 The organisation and duplication of chromosomes as revealed by autoradiographic studies using tritium labelled thymidine.Proc. Natl. Acad. Sci. USA 43, 1519–1524.CrossRefGoogle Scholar
  27. Timofeeff-Ressovsky N. W., Zimmer K. G. and Delbrück M 1935 Uber die Natur der Genmutation und der Genstruktur.Nachr. Ges. Wiss. Göttingen 6, N.F. 13, 190–245.Google Scholar
  28. Watson J. D. 1965The double helix. Weidenfeld and Nicolson, London.Google Scholar
  29. Watson J. D. 1995 Values from a Chicago upbringing. InDNA: the double helix — perspective and prospective at forty years (ed. D. A. Chambers).Ann. N. Y. Acad. Sci. 758, 194–197.Google Scholar
  30. Wilkins M. 2003The third man of the double helix. Oxford University Press, Oxford.Google Scholar
  31. Witkowski J. A. 1986 Schrödinger’s “What is Life?”: entropy, order and hereditary code-scripts.Trends Biochem. Sci. 11, 266–268.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  1. 1.SydneyAustralia

Personalised recommendations