Advertisement

Journal of Scientific Computing

, Volume 25, Issue 1–2, pp 195–211 | Cite as

Time compact high order difference methods for wave propagation, 2D

  • Bertil Gustafsson
  • Per Wahlund
Article
  • 114 Downloads

Abstract

In earlier papers we have constructed difference methods that are fourth-order accurate both in space and time for wave propagation problems. The analysis and numerical experiments have been limited to one-dimensional problems. In this paper we extend the construction and the analysis to two space dimensions, and present numerical experiments for acoustic problems in discontinuous media.

Key words

Difference methods high order wave propagation discontinuous coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, D. (1984). A note on the numerical solution of the wave equation with piecewise smooth coefficients.Math. Comp. 42, 369–391.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carpenter, M., Gottlieb, D., Abarabanel, S., and Don, W.-S. (1995) The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error.SIAM J. Sci. Comput. 16, 1241–1252.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cohen, G., and Joly, P. (1996). Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media.SIAM J. Numer. Anal. 33, 1266–1302.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gustafsson, B., Kreiss, H.-O., and Oliger, J. (1995).Time Dependent Problems and Difference Methods, Wiley, New York.MATHGoogle Scholar
  5. 5.
    Gustafsson, B. and Mossberg E. (2004). Time compact high order difference methods for wave propagation. Report 2003-016, Dept of Information Technology, Uppsala University.SIAM J. Scient. Comp. 26, 259–271.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gustafsson, B. and Wahlund P. (2004). Time compact difference methods for wave propagation in discontinuous media. Report 2003-023, Dept of Information Technology, Uppsala University.SIAM J. Scient. Comp. 26, 272–293.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lax, P. D. and Wendroff, B. (1964). Difference schemes for hyperbolic equations with high order accuracy.Comm. Pure Appl. Math. 17, 381–398.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Noumerov, B. V. (1924). A method of extrapolation of perturbations.Monthly Notices Roy. Astronom. Soc. 84, 592–601.Google Scholar
  9. 9.
    Numerov, B. (1927). Note on the numerical integration ofd 2 x/dt 2 =f(x, t),Astronom. Nachr. 230, 359–364.CrossRefGoogle Scholar
  10. 10.
    Reddy, S., and Trefethen, L. (1992). Stability of the method of lines.Num. Math. 62, 235–267.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Shubin, G. R., and Bell, J. (1987). A modified equation approach to constructing fourth order methods for acoustic wave propagation.SIAM J. Sci. Stat. Comput. 8, 135–151.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yee, K. (1966). Numerical solution of intial boundary value problems involving Maxwell’s equations in isotropic media.IEEE Trans. Antennas and Prop. 14, 302–307.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc 2005

Authors and Affiliations

  1. 1.Division of Scientific ComputingUppsalaSweden

Personalised recommendations