Il Nuovo Cimento B (1971-1996)

, Volume 102, Issue 1, pp 33–49 | Cite as

Coherent and squeezed states in quantum optics

  • A. Jannussis
  • V. Bartzis


In the present paper we produce several interesting properties of the Yuen operators and demonstrate that the squeeze operator is proportional to the well-known multiplication operator. By the help of the multiplication operator we obtain exactly the squeezed states in theq-representation which are the minimal uncertainty states. Finally we show that the exact coherent states of the harmonic oscillator with time-dependent mass and frequency are equivalent with the squeezed states.


PACS 42.50.Dv Nonclassical photon states (including antibunched squeezed, sub-Poissonian) 

Когерентные и сжатые состояния в квантовой оптике


В этой статье мы описываем некоторые интересные свойства операторов юена и показываем, что оператор сжатия пропорционален хорошо известному оператору мультипликации. С помощью оператора мультипликации мы получаем точно сжатые состояния вq-представлении, которые представляют состояния с минимальной неопределенностью. В заключение, мы показываем, что точные когерентные состояния гармонического осциллятора с зависящими от времени массой и частотой являются эквивалентными сжатым состояниям.


In questo lavoro si producono parecchie interessanti proprietà degli operatori di Yuen e si dimostra che l’operatore di schiacciamento è proporzionale al ben noto operatore di moltiplicazione. Con l’aiuto dell’operatore di moltiplicazione si ottengono esattamente gli stati di schiacciamento nella rappresentazioneq che sono gli stati minimi di incertezza. Infine si mostra che gli stati coerenti esatti dell’oscillatore armonico con la massa e la frequenza dipendenti dal tempo sono equivalenti agli stati di schiacciamento.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    E. Schrödinger:Naturwissenschaften,14, 166 (1926).Google Scholar
  2. (2).
    R. Glauber:Phys. Rev.,130, 2529 (1963);131, 2766 (1961).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    M. Nieto andL. Simmons:Phys. Rev. D,20, 1321, 1342 (1979).MathSciNetADSCrossRefGoogle Scholar
  4. (4).
    A. Jannussis, N. Papatheou, N. Patargias andL. Papaloucas:Lett. Nuovo Cimento,31, 385 (1981).CrossRefGoogle Scholar
  5. (5).
    H. Lewis andW. Risenfeld:J. Math. Phys. (N. Y.),10, 1458 (1969).ADSCrossRefGoogle Scholar
  6. (6).
    J. Hartley andJ. Ray:Phys. Rev. D,25, 382 (1982).MathSciNetADSCrossRefGoogle Scholar
  7. (7).
    I. Pedrosa:Phys. Rev. D,36, 1279 (1987);Hadronic J.,9, 173 (1986);I. Pedrosa andB. Basseia:Hadronic J. Suppl.,2, 666 (1986).ADSCrossRefGoogle Scholar
  8. (8).
    H. Yuen:Phys. Rev. A,13, 2226 (1976) and references therein.ADSCrossRefGoogle Scholar
  9. (9).
    D. Walls:Nature (London),306, 141 (1983).ADSCrossRefGoogle Scholar
  10. (10).
    M. Nieto: Los Alamos National Laboratory Report No LA-UR-84-2773 (1984) (unpublished);R. Fisher, M. Nieto andV. Sandberg:Phys. Rev. D,29, 1107 (1984).Google Scholar
  11. (11).
    A. Jannussis andV. Bartzis:Phys. Lett. A,129, 263 (1988).MathSciNetADSCrossRefMATHGoogle Scholar
  12. (12).
    H. Yuen andJ. Shapiro:IEEE Trans Inf. Theory, IT24, 657 (1978); IT26, 78 (1980).MathSciNetADSCrossRefMATHGoogle Scholar
  13. (13).
    J. Shapiro, H. Yuen andI. Machado Mata:IEEE Trans. Inf. Theory, IT125 179 (1979).MathSciNetADSCrossRefGoogle Scholar
  14. (14).
    Y. Ben-Aryeh andA. Mann:Phys. Rev. Lett.,54, 1020 (1985);Phys. Rev. A,32, 552 (1985).ADSCrossRefGoogle Scholar
  15. (15).
    R. Slusher, L. Hollberg, B. Yurke, J. Mertz andJ. Valle:Phys. Rev. Lett.,55, 2409 (1985).ADSCrossRefGoogle Scholar
  16. (16).
    P. Tombesi:Acta Physica Austr.,57, 111 (1985).Google Scholar
  17. (17).
    D. Truax:Phys. Rev. D,31, 1988 (1985).MathSciNetADSCrossRefGoogle Scholar
  18. (18).
    L. Mandel:Phys. Rev. Lett.,49, 136 (1982).ADSCrossRefGoogle Scholar
  19. (19).
    M. Satyanarayana:Phys. Rev. D,32, 400 (1985).MathSciNetADSCrossRefGoogle Scholar
  20. (20).
    F. Hong-Yi, H. Zaidi andJ. Klauder:Phys. Rev. D,35, 1831 (1987).MathSciNetADSCrossRefGoogle Scholar
  21. (21).
    B. Yurke:Phys. Rev. A,29, 408 (1984);32, 300 (1985).MathSciNetADSCrossRefGoogle Scholar
  22. (22).
    W. Witschel:Phys. Lett. A,111, 383 (1985).MathSciNetADSCrossRefGoogle Scholar
  23. (23).
    M. Kozierowski:Phys. Rev. A,34, 3474 (1986).ADSCrossRefGoogle Scholar
  24. (24).
    G. D’Ariano, M. Rasetti andM. Vadacchino:Phys. Rev. D,32, 1034 (1985);J. Katriel, A. Solomon, G. D’Ariano andM. Rasetti:Phys. Rev. D,34, 2332 (1986);G. D’Ariano andM. Rasetti:Phys. Rev. D,35, 1239 (1987).ADSCrossRefGoogle Scholar
  25. (25).
    A. Vourdas:Phys. Rev. A,34, 3466 (1986).ADSCrossRefGoogle Scholar
  26. (26).
    A. Jannussis:General Glauber Operators and Their Coherent States; Seminar Group Theoretical Methods in Physics;Proceedings of the International Seminar, Vol.1 (Moscow, 1980), p. 308.Google Scholar
  27. (27).
    A. Jannussis, N. Patargias andL. Papaloucas:Lett. Nuovo Cimento,29, 87 (1980);A. Rajagopal andJ. Marsal:Phys. Rev. A,26, 2977 (1982);M. Schuldert andW. Vogel:Phys. Rev. A,28, 2668 (1983).MathSciNetCrossRefGoogle Scholar
  28. (28).
    L. Papaloucas: Preprint (1988);Coherent states with complex frequency, Institute of Mathematics, University of Athens, Greece, to be published inPhys. Lett. A.Google Scholar
  29. (29).
    A. Jannussis andV. Bartzis: Preprint (1988);Exact calculation of the squeezed states in the q-representation, to appear inPhys. Lett. A.Google Scholar
  30. (30).
    P. Feinsilver:Lecture Notes in Mathematics, Vol.696;Special Functions, Probability Semigroups and Hamiltonian Flows (Springer-Verlag, Berlin, Heidelberg, New-York, N. Y., 1978), p. 6.Google Scholar
  31. (31).
    K. Yeon, C. Um andT. George:Phys. Rev. A,36, 5287 (1987) and references therein.ADSCrossRefGoogle Scholar
  32. (32).
    P. Caldirola:Nuovo Cimento,18, 393 (1940);Nuovo Cimento B,77, 2475 (1983);E. Kanai:Prog. Theor. Phys.,3, 440 (1948).MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1988

Authors and Affiliations

  • A. Jannussis
    • 1
    • 2
  • V. Bartzis
    • 1
  1. 1.Department of PhysicsUniversity of PatrasPatrasGreece
  2. 2.Institute for Basic ResearchCambridge

Personalised recommendations