Il Nuovo Cimento B (1971-1996)

, Volume 106, Issue 11, pp 1195–1219 | Cite as

The MIC-Kepler problem and its symmetry group for zero energy both in classical and quantum mechanics

  • T. Iwai
  • Y. Uwano


The symmetry of the Kepler problem has been well known in classical as well as quantum mechanics on the level of Lie algebra, while little is known of global symmetry. In previous papers[1, 2], the MIC-Kepler problem was introduced, which is the Kepler problem along with a centrifugal potential and Dirac’s monopole field. This system was shown, in the negative energy case, to admit the same symmetry groupSO(4) as the Kepler problem does in classical theory, and to carry all the irreducible representations ofSU(2)×SU(2), the double cover ofSO(4), in qunatum theory. This paper is a continuation of the previous ones and intended for the study of the symmetry group in the zero-energy case. In classical theory, the symmetry group of the MIC-Kepler problem of zero energy proves to be a semi-direct product groupR3SO(3) acting on the zero-energy manifold diffeomorphic toR3×S2. In quantum theory, the quantized MIC-Kepler problem with zeroenergy, assigned by an integerm, turns out to carry a unitary irreducible representation ofR3SU(2), the double cover ofR3SO(3), in a Hilbert space, which is isomorphic with the space ofL2-cross-sections in the complex line bundleLm associated with the principalS1 bundleS3S2. These representations ofR3SU(2), assigned bym, are equivalent to the Mackey’s induced representations ofR3SU(2).


PACS 02.20 Group theory PACS 02.40 Geometry differential geometry and topology PACS 03.20 Classical mechanics of discrete systems general mathematical aspects PACS 03.65 Quantum theory quantum mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Iwai andY. Uwano:J. Math. Phys.,27, 1523 (1986).MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    T. Iwai andY. Uwano:J. Phys. A,21, 4083 (1988).MathSciNetADSCrossRefMATHGoogle Scholar
  3. [3]
    H. V. McIntosh andA. Cisneros:J. Math. Phys.,11, 896 (1970).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J. F. Schonfeld:J. Math. Phys.,21, 2528 (1980).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Kibler andT. Negadi:Phys. Rev. A,29, 2891 (1984).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    L. S. Wollenberg:J. Math. Phys.,16, 1352 (1975).MathSciNetADSCrossRefMATHGoogle Scholar
  7. [7]
    S. Helgason:J. Funct. Anal.,17, 328 (1974).MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S. Kobayashi andK. Nomizu:Foundations of Differential Geometry, Vol. 1 (Wiley, New York, N. Y., 1963), chapt. 2.MATHGoogle Scholar
  9. [9]
    G. W. Mackey:Induced Representation (Benjamin-Editore Boringhieri, New York-Torino, 1968).Google Scholar
  10. [10]
    T. Iwai:J. Math. Phys.,22, 1633 (1981).MathSciNetADSCrossRefMATHGoogle Scholar
  11. [11]
    M. Kummer:Indiana Univ. Math. J.,30, 281 (1981).MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. E. Marsden andA. Weinstein:Rep. Math. Phys.,5, 121 (1974).MathSciNetADSCrossRefMATHGoogle Scholar
  13. [13]
    M. Kummer:Commun. Math. Phys.,84, 133 (1982).MathSciNetADSCrossRefMATHGoogle Scholar
  14. [14]
    B. Cordani:Commun. Math. Phys.,103, 403 (1986).MathSciNetADSCrossRefMATHGoogle Scholar
  15. [15]
    B. Cordani andC. Reina:Lett. Math. Phys.,13, 79 (1987).MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    T. Iwai:J. Math. Phys.,23, 1093 (1982).MathSciNetADSCrossRefMATHGoogle Scholar
  17. [17]
    K. Yosida:Functional Analysis, 6th. ed. (Springer, Berlin, 1980).CrossRefMATHGoogle Scholar
  18. [18]
    M. Moshinsky andC. Quesne:J. Math. Phys.,12, 1772 (1971).MathSciNetADSCrossRefMATHGoogle Scholar
  19. [19]
    V. Guillemin andS. Sternberg:Symplectic Techniques in Physics (Cambridge U. P., Cambridge, 1984), chapt. 1.MATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • T. Iwai
    • 1
  • Y. Uwano
    • 1
  1. 1.Department of Applied Mathematics and PhysicsKyoto UniversityKyotoJapan

Personalised recommendations