Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 34, Issue 2, pp 245–255 | Cite as

The role of strong interactions in cosmology

  • M. Dersarkissian
Article
  • 21 Downloads

Summary

A cosmological model is constructed which is a Friedmann model, but with a finite ultimate temperature (TF). The model predicts the temperature of the cosmic-microwave background in terms of 4 parameters: the present energy density of matter in the Universe and the parameters which may have characterized hot, dense, hadronic matter during the early Universe (A, TF, B). The latter are defined by the level density for hadronic matter:\(\sigma (m)\underrightarrow {m \to \infty } Am^{ - B} exp [m/T_F ]\). The calculation of the microwave temperature gives similar results for Hagedorn (B=5/2) and Frautschi (B=3) models. Both models clearly favour a low cosmic density ((10−31÷10−33) g/cm3) over a high density (10−29 g/cm3). This result suggests that hot, dense, hadronic matter in thermal contact with radiation in the early Universe conspired to produce the open Universe of today.

Роль сильных вааимодействий в космологии

Резюме

Конструируется космологическая модель, которая представляет модель Фридмана, но с конечной температурой (TF). Предложенная модель предсказывает температуру космического микроволнового фона в терминах четырех параметров: современная плотность энергии во Вселенной и параметры, которые характеризуют горячее, плотное, адронное вещество на ранних стадиях развития Вселенной (A, TF, B). Последние параметры определяют уровень плотности адронного вещества:\(\sigma (m)\underrightarrow {m \to \infty } Am^{ - B} exp [m/T_F ]\). Вычисление микроволновой температуры дает одинаковый результат для моделей Хагедорна (B=5/2) и Фраутчи (B=3). Обе эти модели отдают предпочтение низкой космической плотности ((10−31÷10−33) г/см3) по сравнению с высокой плотностяю (10−29 г/см3). Этот результат подтверждает, что горячее, плотное, адронное вещество в тепловом контакте с излучением на ранней стадии развития Вселенной способствовало бы образованию открытой Вселенной в настоящее время.

Riassunto

Si costruisce un modello cosmologico che è un modello di Friedmann, ma con una temperatura finale finita (TF). Il modello predice la temperatura del fondo della microonda cosmica in termini di 4 parametri: l'attuale densità di energia della materia nell'Universo e i parametri che possono aver caratterizzato la materia calda, densa e adronica durante il primo Universo (A, TF, B). Questi ultimi sono definiti dalla densità dei livelli per la materia adronica:\(\sigma (m)\underrightarrow {m \to \infty } Am^{ - B} exp [m/T_F ]\). Il calcolo della temperatura della microonda dà risultati analoghi per i modelli di Hagedorn (B=5/2) e di Frautschi (B=3). Entrambi i modelli favoriscono chiaramente una bassa densità cosmica ((10−31÷10−33) g/cm3) rispetto ad un'alta densità (10−29 g/cm3). Questo risultato suggerisce che la materia calda, densa, adronica in contatto termico con la radiazione nel primo Universo cooperò nel produrre l'odierno Universo aperto.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Weinberg:Gravitation and Cosmology (New York, N. Y., 1972).Google Scholar
  2. (2).
    R. Hagedorn:Astron. and Astrophys.,5, 184 (1970). See also references to Hagedorn's earlier work which are given there (Nuovo Cimento (1965–1968)).ADSMATHGoogle Scholar
  3. (3).
    M. Dersarkissian:Phys. Lett.,55 B, 84 (1975).ADSCrossRefGoogle Scholar
  4. (4).
    K. Huang andS. Weinberg:Phys. Rev. Lett.,25, 895 (1970).ADSCrossRefGoogle Scholar
  5. (5).
    Ya. B. Zeldovich, L. Okun andS. Pikelner:Usp. Fiz. Nauk.,87, 113 (1965) (English translation:Sov. Phys. Uspekhi,8, 702 (1966).CrossRefGoogle Scholar
  6. (6).
    S. Frautschi, G. Steigman andJ. Bahcall:Astrophys. Journ.,175, 307 (1972).ADSCrossRefGoogle Scholar
  7. (7).
    R. Carlitz, S. Frautschi andW. Nahm:Astron. and Astrophys.,26, 171 (1973).ADSGoogle Scholar
  8. (8).
    R. Sistero:Astrophys. and Space Sci.,24, 181 (1973).ADSCrossRefGoogle Scholar
  9. (9).
    R. Hagedorn andI. Montvay:Nucl. Phys.,59 B, 45 (1973);W. Nahm:Nucl. Phys.,45 B, 525 (1972).ADSCrossRefGoogle Scholar
  10. (10).
    See ref. (1)S. Weinberg:Gravitation and Cosmology (New York, N. Y., 1972), for the historical development of general relativity with applications to models of the Universe.Google Scholar
  11. (11).
    A. Penzias andR. Wilson:Astrophys. Journ.,142, 419 (1965).ADSCrossRefGoogle Scholar
  12. (12).
    See for example:a)F. Hoyle:Phys. Rev. Lett.,15, 131 (1865);b)K. Greisen:Phys. Rev. Lett.,16, 748 (1966);c)S. Hawking andG. Ellis:Astrophys. Journ.,152, 25 (1968).CrossRefGoogle Scholar
  13. (13).
    For a review of cosmological element production in the fireball model see:R. Alpher andR. Herman:Rev. Mod. Phys.,22, 153 (1950).ADSCrossRefMATHGoogle Scholar
  14. (14).
    For a review of the observational status of cosmological helium see:L. Searle andW. Sargent:Comments: Astrophys. and Space Sci.,4, 59 (1972).ADSGoogle Scholar
  15. (15).
    For a review of element synthesis in stars see:G. Burbridge, M. Burbridge, W. Fowler andF. Hoyle:Rev. Mod. Phys.,29, 547 (1957).ADSCrossRefGoogle Scholar
  16. (16).
    R. Dicke:Astrophys. Journ.,152, 1 (1968).ADSCrossRefGoogle Scholar
  17. (17).
    R. Wagoner, W. Fowler andF. Hoyle:Astrophys. Journ.,148, 3 (1967).ADSCrossRefGoogle Scholar
  18. (18).
    R. Omnès:Phys. Reports,3, 1 (1972) (Section C ofPhys. Lett.).ADSCrossRefGoogle Scholar
  19. (19).
    S. Weinberg:Gravitation and Cosmology (New York, N. Y., 1972), p. 506.Google Scholar
  20. (20).
    a)R. Hagedorn: unpublished CERN lectures,Thermodynamics of Strong Interactions (1971, identification number: CERN 71-12);b)R. Hagedorn:Cargèse Lectures in Physics, edited byE. Schatzman, Vol.6 (New York, N. Y., 1973), p. 643.Google Scholar
  21. (21).
    For a review seeG. Abell:Ann. Rev. Astron. Astrophys.,3, 1 (1965).ADSCrossRefGoogle Scholar
  22. (22).
    J. Peach:Astrophys. Journ.,159, 753 (1970). (q 0=1.5±0.4.)ADSCrossRefGoogle Scholar
  23. (23).
    a)S. Frautschi:Phys. Rev. D,3, 2821 (1971);b)C. Hamer andS. Frautschi:Phys. Rev. D,4, 2125 (1971).ADSCrossRefGoogle Scholar
  24. (24).
    S. Frautschi:Statistical treatment of the average resonance width (see fig. 1), California Institute of Technology, preprint (1974).Google Scholar

Copyright information

© Società Italiana di Fisica 1976

Authors and Affiliations

  • M. Dersarkissian
    • 1
  1. 1.Department of PhysicsTemple UniversityPhiladelphia

Personalised recommendations