Il Nuovo Cimento A (1965-1970)

, Volume 67, Issue 3, pp 437–473 | Cite as

A general approach to the symmetry and the factorization properties of theN-point dual amplitudes

  • C. B. Chiu
  • S. Matsuda
  • C. Rebbi


We present a general method for analyzing the consequence of the symmetries in the dual amplitudes. We show that the existence of the generalized gauge transformation is related not only to the reflection symmetry but also to the cyclic symmetry of the dual amplitudes. We give the explicit form for the generator of the gauge transformation in two different formalisms for theN-point function. Other transformation operators present in these formalisms are also investigated.


Gauge Transformation Cyclic Permutation Vertex Function External Momentum Factorization Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Общий подход к симметрии и свойства факторизацииN-точечных дуальных амплитуд


Мы предлагаем общий метод для анализа следствия симметрий в дуальных амплитудах. Мы показываем, что существование обобщенного калибровочного преобразования связано не только с симметрией отражения, но также с циклической симметрией дуальных амплитуд. Мы приводим точную форму для генератора калибровочного преобразования в двух различных формализмах дляN-точечной функции. Также исследуются операторы других преобразований, представленные в этих формализмах.


Si presenta un metodo generale per analizzare la conseguenza delle simmetrie nelle ampiezze duali. Si dimostra che l'esistenza della trasformazione di gauge generalizzata è collegata non soltanto alla simmetria di riflessione ma anche alla simmetria ciclica delle ampiezze duali. Si fornisce la forma esplicita per il generatore della trasformazione di gauge in due formalismi differenti per la funzione aN punti. Si studiano altri operatori di trasformazione presenti in questi formalismi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    G. Veneziano:Nuovo Cimento,57 A, 190 (1968).ADSCrossRefGoogle Scholar
  2. (2).
    The five-point function was given byK. Bardakçi andH. Ruegg:Phys. Lett.,28 B, 342 (1968); and byM. A. Virasoro:Phys. Rev. Lett.,22, 37 (1969).CrossRefGoogle Scholar
  3. (3).
    The generalization to an arbitraryN-point function was given byH. M. Chan:Phys. Lett.,28 B, 425 (1969);H. M. Chan andTsou S. Tsun:Phys. Lett.,28 B, 485 (1969);C. Goebel andB. Sakita:Phys. Rev. Lett.,22, 257 (1969);K. Bardakçi andH. Ruegg:Phys. Rev.,181, 1884 (1969).CrossRefGoogle Scholar
  4. (4).
    A generalization to theN-point function was also given byZ. Koba andH. B. Nielsen:Nucl. Phys. B10, 633 (1969).ADSCrossRefGoogle Scholar
  5. (5).
    S. Fubini andG. Veneziano:Nuovo Cimento,64 A, 811 (1969).ADSCrossRefGoogle Scholar
  6. (6).
    K. Bardakçi andS. Mandelstam:Phys. Rev.,184, 1640 (1969).ADSCrossRefGoogle Scholar
  7. (7).
    S. Fubini, D. Gordon andG. Veneziano:Phys. Lett.,29 B, 679 (1969);Y. Nambu: University of Chicago preprint EFI 69-64 (1969).CrossRefGoogle Scholar
  8. (8).
    C. B. Chiu, S. Matsuda andC. Rebbi:Phys. Rev. Lett.,23, 1526 (1969).ADSCrossRefGoogle Scholar
  9. (9).
    F. Gliozzi: Torino preprint (1969).Google Scholar
  10. (10).
    C. B. Thorn: Berkeley preprint (1969).Google Scholar
  11. (11).
    D. Amati, M. Le Bellac andD. Olive: CERN preprint (1969).Google Scholar
  12. (12).
    H. Stapp: Trieste preprint (1969). A formalism similar to that of Stapp's has also been discussed in ref. (11)D. Amati, M. Le Bellac andD. Olive: CERN preprint (1969).Google Scholar
  13. (13).
    L. Caneschi, A. Schwimmer andG. Veneziano:Phys. Lett.,30 B, 351 (1969).CrossRefGoogle Scholar
  14. (14).
    S. Sciuto: Torino preprint (1969).Google Scholar
  15. (15).
    Although the three-resonance vertex function was derived in ref. (14)S. Sciuto: Torino preprint (1969) (also ref. (13)L. Caneschi, A. Schwimmer andG. Veneziano:Phys. Lett.,30 B, 351 (1969), with asymmetric definitions for the three relevant propagators, the expression of eq. (5.14) as given in ref. (13)L. Caneschi, A. Schwimmer andG. Veneziano:Phys. Lett.,30 B, 351 (1969) should in fact correspond to that for symmetric definitions of original propagators. We thank Dr.L. Caneschi for informing us on this point.Google Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • C. B. Chiu
    • 1
  • S. Matsuda
    • 1
  • C. Rebbi
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations