Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 4, Issue 2, pp 363–382 | Cite as

Inelastic lepton scattering from nucleons and positivity restrictions

  • M. G. Doncel
  • E. de Rafael
Article

Summary

The complete sets of restrictions among structure functions which stem from the semi-positive definiteness of the electromagnetic and weak hadronic tensors are derived. Applications are made to inelastic scattering of electrons or muons from polarized nucleons, inelastic scattering of polarized electrons or muons from polarized nucleons and inelastic scattering of neutrinos from nucleons with subsequent analysis of the polarization of the outgoing muon.

Неупругое рассеяние лептонов на ядрах и ограничения положительности

Реэюме

Выводится полная система ограничений среди структурных функций, которые вытекают иэ полу-положительной определенности злектромагнитных и слабых адронных тенэоров. Рассматриваются применения к неупругому рассеянию злектронов или мюонов на поляриэованных нуклонах; к неупругому рассеянию поляриэованных злектронов или мюонов на поляриэованных нуклонах; и к неупругому рассеянию нейтрино на нуклонах с последуюшим аналиэом поляриэации вылетаюшего мюона.

Riassunto

Si deduce il gruppo completo delle restrizioni fra le funzioni di struttura che nascono dalla definitezza semipositiva del tensore elettromagnetico e adronico debole. Lo si applica allo scattering anelastico di elettroni o muoni su nucleoni polarizzati, allo scattering anelastico di elettroni o muoni polarizzati su un nucleo polarizzato ed allo scattering anelastico di neutrini su nucleoni, con successiva analisi della polarizzazione del muone uscente.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. R. Chen, J. Sanderson, J. A. Appel, G. Gladding, M. Goitein, K. Hanson, D. C. Imrie, T. Kirk, R. Madaras, R. V. Pound, L. Price, R. Wilson andC. Zajde:Phys. Rev. Lett.,21, 1279 (1968).CrossRefADSGoogle Scholar
  2. (2).
    S. Rock, M. Borghini, O. Chamberlain, R. Z. Fuzesy, C. C. Morehouse, T. Powell, G. Shapiro, H. Weisberg, R. L. A. Cottrell, J. Litt, L. W. Mo andR. E. Taylor:Phys. Rev. Lett.,24, 748 (1970).CrossRefADSGoogle Scholar
  3. (3).
    For an excellent review, where earlier references can be found, seeC. H. Llewellyn Smith: CERN report TH 1188 (1970).Google Scholar
  4. (4).
    Our metric and Dirac matrices are those ofJ. D. Bjorken andS. D. Drell textbooks.Google Scholar
  5. (6).
    This is very similar to the method used byJ. D. Bjorken in his paperApplications of the chiral U 6 ⊗ U6 algebra of current densities;J. D. Bjorken:Phys. Rev.,148, 1467 (1966).CrossRefADSGoogle Scholar
  6. (7).
    To our knowledge the spin-dependent structure functionsG 1 andG 2 were first discussed byIddings in connection with the problem of the nuclear-structure effects in the hyperfine splitting of the ground state of atomic hydrogen:C. K. Iddings:Phys. Rev.,138, B 466 (1965). This is the counterpart to the problem of the neutronproton electromagnetic mass difference whereW 1 andW 2 are involved:W. N. Cottingham:Ann. of Phys.,25, 424 (1963).Google Scholar
  7. (8).
    For a discussion of the positivity domain of spin-density matrices seeP. Minnaert:Phys. Rev. Lett.,16, 672 (1966);Phys. Rev.,151, 1306 (1966);M. G. Doncel: Thesis, Universidad de Barcelona (1967);L. Michel:Matrices densité de polarisation, IHES preprint (1967). For a complete study of positivity restrictions in two-particle reactions seeM. G. Doncel, L. Michel andP. Minnaert:Polarization density matrix, first and second issue of a series of preprints reproduced by Laboratoire de Physique Théorique, Université de Bordeaux, Talence. See also theLectures at the Ecole d’Eté de Gif-sur-Yvette, September 1970 (to be published).MathSciNetCrossRefADSGoogle Scholar
  8. (9).
    These conditions have been previously discussed by a number of authors:N. Christ andT. D. Lee:Phys. Rev.,143, 1310 (1966);N. Dombey:Rev. Mod. Phys.,41, 236 (1969);J. D. Bjorken:Phys. Rev. D,1, 1376 (1970).CrossRefADSGoogle Scholar
  9. (10).
    SeeN. Christ andT. D. Lee:Phys. Rev.,143, 1310 (1966), Appendix 6.CrossRefADSGoogle Scholar
  10. (11).
    These restrictions are similar to those obtained by the application of the Eberhard-Good theorem to particle reactions:P. Eberhard andM. L. Good:Phys. Rev.,120, 1442 (1960). See also ref. (8).MATHCrossRefADSGoogle Scholar
  11. (13).
    The inequalities (3.3a), (3.3b) and (3.3c) are well known. See,e.g.,D. J. Gross andC. H. Llewellyn Smith:Nucl. Phys.,14 B, 337 (1969);J. D. Bjorken andE. A. Paschos:Phys. Rev. D,1, 3151 (1970). See alsoT. D. Lee andC. N. Yang:Phys. Rev.,126, 2239 (1962).CrossRefADSGoogle Scholar
  12. (14).
    This has been discussed very much in detail byN. Christ andT. D. Lee:Phys. Rev.,143, 1310 (1966); and byC. A. Piketty:Nuovo Cimento,64 A, 39 (1966). We include a few comments here as an illustration of the applications of positivity.CrossRefADSGoogle Scholar
  13. (15).
    For a discussion of the electromagnetic final-state interactions seeR. N. Cahn andY. S. Tsai:Phys. Rev.,20, 870 (1970).Google Scholar
  14. (16).
    J. D. Bjorken:Phys. Rev.,148, 1467 (1966);Phys. Rev. D,1, 1376 (1970).CrossRefADSGoogle Scholar
  15. (17).
    In the elastic case, these effects can be rigorously bounded to order α. SeeA. de Rújula andE. de Rafael:Phys. Lett.,32 B, 495 (1970).CrossRefADSGoogle Scholar
  16. (18).
    For a description of the deep inelastic electron scattering experiments see,e.g,R. E. Taylor:Inelastic electron-proton scattering in the deep continuum region, inProceedings of the IV International Symposium on Electron and Photon Interactions at High Energies (Daresbury, 1969).Google Scholar

Copyright information

© Società Italiana di Fisica 1971

Authors and Affiliations

  • M. G. Doncel
    • 1
  • E. de Rafael
    • 2
  1. 1.Departamento de Física TeóricaUniversidad de BarcelonaBarcelona
  2. 2.Institut des Hautes Etudes ScientifiquesBures-sur-Yvette

Personalised recommendations