Il Nuovo Cimento A (1965-1970)

, Volume 4, Issue 2, pp 209–228 | Cite as

A generalized Veneziano model with spin and isospin for Open image in new window \(\bar K\)Kπ processes Open image in new window K\(\bar K\)π processes

  • G. Benfatto
  • M. Lusignoli
  • F. Nicolò


We propose a Veneziano-type model for the processes having the correct asymptotic behaviour and spin structure, the right isospin and signature on the parent trajectories and the appropriate factorization properties on the lowest poles. The requirement of a minimum number of satellite terms greatly reduces the number of free parameters.

Обобшенная модель Венециано со спином и иэоспином для процессов Open image in new window \(\bar K\)Кπ


Мы предлагаем модель типа модели Венециано для процессов Nπ, имеюшую правильное асимптотическое поведение и спиновую структуру, правильный иэоспин и сигнатуру на исходных траекториях и соответствуюшие свойства факториэации в ниэщих полюсах. Требование минимального числа сател-литных членов в эначительной степени сокрашает число свободных параметров.


Si propone un modello del tipo di quello di Veneziano per i processi. Esso ha andamento asintotico e proprietà di spin corretti, spin isotopico e segnatura sulle traiettorie « madri » e le giuste proprietà di fattorizzazione ai poli più bassi. La richiesta che il numero di termini satelliti sia minimo riduce grandemente il numero di parametri liberi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    For a recent review see, for example,H. Satz: CERN preprint TH-1214 (1970).Google Scholar
  2. (2).
    B. Petersson andN. A. Törnqvist:Nucl. Phys.,13 B, 629 (1969);N. A. Törnqvist:Nucl. Phys.,18 B, 530 (1970);P. Hoyer, B. Petersson andN. H. Törnqvist: CERN preprint TH-1159 (1970);Aachen-Berlin-CERN-London-Vienna Collaboration: CERN/D.PH.II/PHYS. 70-3 and 70-13 (1970);K. Kajantie andS. Papageorgiou: CERN preprint TH-1170 (1970).CrossRefADSGoogle Scholar
  3. (3).
    Chan Hong-Mo, R. O. Raitio, G. H. Thomas andN. A. Törnqvist:Nucl. Phys.,19 B, 173 (1970).CrossRefADSGoogle Scholar
  4. (4).
    H. R. Rubinstein, E. J. Squires andM. Chaichian:Phys. Lett.,30 B, 191 (1969).ADSGoogle Scholar
  5. (5).
    G. Benfatto, M. Cassandro, M. Lusignoli andF. Nicolò:Nuovo Cimento,1 A, 255 (1971).CrossRefADSGoogle Scholar
  6. (*).
    This is also true, both for four-point and five-point Veneziano functions, for the → πππ processes (4)ADSGoogle Scholar
  7. (6).
    H. Harari:Phys. Rev. Lett.,20, 1395 (1968);P. G. O. Freund:Phys. Rev. Lett.,20, 235 (1968).CrossRefADSGoogle Scholar
  8. (7).
    K. Igi:Phys. Lett.,28 B, 330 (1968);E. L. Berger andG. C. Fox:Phys. Rev.,188, 2120 (1969), and references quoted therein.CrossRefADSGoogle Scholar
  9. (8).
    I. Bender, H. G. Dosch, V. F. Müller andH. J. Rothe:Zeits. Phys.,237, 192 (1970).CrossRefGoogle Scholar
  10. (9).
    S. Fubini andG. Veneziano:Nuovo Cimento,64 A, 811 (1969);K. Bardakçi andS. Mandelstam:Phys. Rev.,184, 1640 (1969).CrossRefADSGoogle Scholar
  11. (*).
    We do not put other baryon trajectories in the model so as not to over-complicate it.Google Scholar
  12. (**).
    Contrary to what generally happens in this kind of models, it is possible for us to have the pion and eta particles not degenerate in mass.Google Scholar
  13. (10).
    See, for example,T. W. B. Kibble:Phys. Rev.,131, 2282 (1963).MathSciNetCrossRefADSMATHGoogle Scholar
  14. (*).
    The conventions for γ-matrices and spinors are as in the Appendix of ref. (11).Google Scholar
  15. (11).
    J. D. Bjorken andS. D. Drell:Relativistic Quantum Fields (New York, 1965).Google Scholar
  16. (12).
    H. Harari:Phys. Rev. Lett.,22, 563 (1969);J. L. Rosner:Phys. Rev. Lett.,22, 689 (1969).ADSGoogle Scholar
  17. (*).
    It is easy to verify that this procedure does not introduce any kinematical singularities.Google Scholar
  18. (13).
    J. L. Hopkinson andE. Plahte:Phys. Lett.,28 B, 489 (1969).CrossRefADSGoogle Scholar
  19. (14).
    K. Kawarabayashi, S. Kitakado andH. Yabuki:Phys. Lett.,28 B, 432 (1969).CrossRefADSGoogle Scholar
  20. (15).
    J. J. Sakurai:Ann. of Phys,11, 1 (1960)MathSciNetCrossRefADSGoogle Scholar
  21. (16).
    P. Carruthers:Lectures in Theoretical Physics, Vol.7 b (Boulder, Colo., 1965), p. 82.MathSciNetGoogle Scholar
  22. (17).
    See, for example,N. M. Queen, M. Restignoli andG. Violini:Fortsch. d. Phys.,17, 467 (1969).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1971

Authors and Affiliations

  • G. Benfatto
    • 1
  • M. Lusignoli
    • 1
    • 2
  • F. Nicolò
    • 1
    • 3
  1. 1.Istituto di Fisica dell’UniversitàRoma
  2. 2.Istituto di Fisica dell’UniversitàL’Aquila
  3. 3.Istituto di Fisica dell’UniversitàMessina

Personalised recommendations