Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 109, Issue 6, pp 611–616 | Cite as

Maxwell’s demon revisited

  • L. E. Beghian
Article

Summary

The problem of velocity selection by Maxwell’s demon in a many-particle gas, as distinct from a one-particle gas, is addressed. For such a situation it is shown that it is impossible to effect a separation of the molecules into two separate partitions so as to bring about an overall decrease in entropy unless information entropy is made available to the system. The validity of this conclusion is discussed in terms of the Gibbs paradox and the principle of quantum indistinguishability of identical particles.

Keywords

PACS 05.20.Gg Classical ensemble theory PACS 05.30.Ch Quantum ensemble theory PACS 05.30.Jp Boson systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. S. Leff andA. F. Rex:Maxwell’s Demon (Princeton University Press, Princeton, N.J., 1990).CrossRefGoogle Scholar
  2. [2]
    H. S. Leff andA. F. Rex:Maxwell’s Demon (Princeton University Press, Princeton, N.J., 1990), p. 2.CrossRefGoogle Scholar
  3. [3]
    R. Landauer:IBM J. Res. Dev.,5, 183 (1961).MathSciNetCrossRefGoogle Scholar
  4. [4]
    C. H. Bennett:Int. J. Theor. Phys.,21, 905 (1982).CrossRefGoogle Scholar
  5. [5]
    R. C. Tolman:The Principles of Statistical Mechanics (Oxford University Press, London, 1962), pp. 626–627.Google Scholar
  6. [6]
    L. E. Beghian:Nuovo Cimento B,107, 141 (1992).MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • L. E. Beghian
    • 1
  1. 1.Department of PhysicsUniversity of Massachusetts LowellLowellUSA

Personalised recommendations