Il Nuovo Cimento B (1971-1996)

, Volume 109, Issue 6, pp 583–594 | Cite as

Quantization of a non-holonomic system with symmetry

  • P. Pitanga


We study a two-dimensional non-holonomic system with symmetry groupG. The classical theory is studied using the orthogonal-projector method, while the quantum mechanics is obtained by group-theoretical means after reducing the classical phase space. We show that the solution of the Schrödinger equation of the system is compatible with the modified quantum vonstraint, in accordance with the BRST prescription.


PACS 03.20 Classical mechanics of discrete systems: general mathematical aspects PACS 03.65.Bz Foundations theory of measurement miscellaneous theories PACS 03.65.Fd Algebraic methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Pitanga andK. C. Mundim:Nuovo Cimento A,101, 345 (1989).ADSCrossRefGoogle Scholar
  2. [2]
    P. Pitanga:Nuovo Cimento A,103, 1529 (1990).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. A. Santos, J. C. Mello andP. Pitanga:Z. Phys. C,55, 271 (1992).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J. Koiller:Arch. Ration. Mech. Anal.,118, 309 (1992).MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    L. Bates andJ. Sniatycki:Rep. Math. Phys.,32, 99 (1992).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J. Neimark andN. Fufaev:Dynamics of Nonholonomic Systems (American Mathematical Society, Providence, R.I., 1972), p. 114.MATHGoogle Scholar
  7. [7]
    M. De Léon andP. R. Rodrigues:Rend. Mat.,8, 105 (1988).Google Scholar
  8. [8]
    M. Moshinsky andT. H. Seligman:Ann. Phys. (N.Y.),144, 243 (1978).MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    B. Kostant andS. Sternberg:Ann. Phys. (N.Y.),176, 49 (1987).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    C. Duval et al.:Ann. Phys. (N.Y.),206, 1 (1991).MathSciNetADSCrossRefMATHGoogle Scholar
  11. [11]
    C. A. Mead:Rev. Mod. Phys.,64, 51 (1992).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J. E. Avron:Rev. Mod. Phys.,60, 873 (1992).MathSciNetADSCrossRefMATHGoogle Scholar
  13. [13]
    A. Shapere andF. Wilczek (Editors):Geometric Phases in Physics (World Scientific, Singapore, 1989).MATHGoogle Scholar
  14. [14]
    Y. H. Chen, F. Wilczek, E. Witten andB. I. Halperin:Int. J. Mod. Phys. B,3, 1001 (1989).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. P. Balachandran:Int. J. Mod. Phys. B,5, 2585 (1991).ADSCrossRefGoogle Scholar
  16. [16]
    Y. Aharonov andD. Bohm:Phys. Rev.,115, 485 (1959).MathSciNetADSCrossRefMATHGoogle Scholar
  17. [17]
    V. Bargmann:Ann. Math.,48, 569 (1947).MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Moshinsky, T. H. Seligman andK. B. Wolf:J. Math. Phys.,13, 901 (1972).MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J. M. Leinaas andJ. Myrheim:Nuovo Cimento B,37, 1 (1977).ADSCrossRefGoogle Scholar
  20. [20]
    B. Roy, A. O. Barut andP. Roy:Phys. Lett. A,172, 316 (1993).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • P. Pitanga
    • 1
  1. 1.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations