Il Nuovo Cimento B (1971-1996)

, Volume 109, Issue 5, pp 533–540 | Cite as

How multipole electric moments enter into macroscopic Maxwell equations

  • C. Trimarco


This paper is concerned with the correspondence between the macroscopic electric displacementD and the analogous quantityDm of microscopic derivation. Instead of identifying these two fields one with the other, we will equate them, while the identification of the macroscopic polarization with that of microscopic derivation is retained. The result is a new field equation along with the Maxwell equations.

PACS 03.50.De

Maxwell theory: general mathematical aspects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. A. Lorentz:The Theory of Electrons and its Applications to Phenomena of Light and Radiant Heat (B. G. Teubner, Leipzig, 1909).Google Scholar
  2. [2]
    L. Rosenfeld:Theory of Electrons (North-Holland, Amsterdam, 1951).MATHGoogle Scholar
  3. [3]
    G. Russakoff:Am. J. Phys.,38, 1188 (1970).ADSCrossRefMATHGoogle Scholar
  4. [4]
    J. Van Vleck:The Theory of Electric and Magnetic Susceptibilities, 4th edition (Oxford University Press, London, 1952).Google Scholar
  5. [5]
    J. Voisin:Physica,52, 195 (1959).ADSCrossRefGoogle Scholar
  6. [6]
    F. N. H. Robinson:Macroscopic Electromagnetism (Pergamon Press, Oxford, 1973).Google Scholar
  7. [7]
    S. R. De Groot:Physica,31, 953 (1965).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P. Mazur andB. R. A. Nijboer:Physica,19, 971 (1953).MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    F. Sauter:Z. Phys.,126, 207 (1949).ADSCrossRefMATHGoogle Scholar
  10. [10]
    C. B. Kafadar andA. C. Eringen:J. Math. Phys.,11, 984 (1970).Google Scholar
  11. [11]
    R. Becker andF. Sauter:Electromagnetic Fields and Interactions, Vol. 1 (Blackie, London, 1964).Google Scholar
  12. [12]
    J. D. Jackson:Classical Electrodynamics (Wiley, New York, N.Y., 1975).Google Scholar
  13. [13]
    C. B. Kafadar:Int. J. Eng. Sci.,9, 831 (1971).CrossRefGoogle Scholar
  14. [14]
    L. Landau andE. M. Lifshitz:Electrodyamics of Continuous Media (Pergamon Press, Oxford, 1960).Google Scholar
  15. [15]
    C. J. Bötcher:Theory of Electric Polarization: Dielectrics in Static Fields, Vol.1 (Elsevier, Amsterdam, 1973).Google Scholar
  16. [16]
    L. Onsager:J. Am. Chem. Soc.,58, 1487 (1936).CrossRefGoogle Scholar
  17. [17]
    H. Demiray andA. C. Eringen:Lett. Appl. Eng. Sci.,1, 517 (1973).Google Scholar
  18. [18]
    I. Müller:Thermodynamics (Pitman, London, 1985).MATHGoogle Scholar
  19. [19]
    C. Kittel:Introduction to Solid State Physics (Wiley, New York, N.Y., 1986).Google Scholar
  20. [20]
    W. P. Mason:Crystal Physics of Interaction Processes (Academic Press, New York, N.Y., 1966).Google Scholar
  21. [21]
    O. F. Mossotti:Mem. Mat. Fis. Soc. Ital. Sci. Modena,24, 49 (1850).Google Scholar
  22. [22]
    R. D. Mindlin:J. Elasticity,2, 217 (1972).CrossRefGoogle Scholar
  23. [23]
    R. A. Toupin:J. Rat. Mech. Anal.,5, 850 (1956).MathSciNetGoogle Scholar
  24. [24]
    G. A. Maugin:Acta Mech.,35, 1 (1980).MathSciNetADSCrossRefMATHGoogle Scholar
  25. [25]
    A. Prechtl:Int. J. Eng. Sci.,18, 665 (1980).CrossRefMATHGoogle Scholar
  26. [26]
    A. Askar, P. C. Y. Lee andA. S. Cakmak:Phys. Rev. B,1, 3525 (1970).ADSCrossRefMATHGoogle Scholar
  27. [27]
    B. Collet:Elastic Dielectrics with Electric Quadrupoles. Recent Developments in the Theory and Application of Generalized and Oriented Media, Calgary, Canada, 1979, edited byP. G. Glockner, M. Epstein andD. J. Malcom (American Academy of Mechanics, Calgary, 1979), p. 205.Google Scholar
  28. [28]
    C. Trimarco:Int. J. Eng. Sci.,27, 1569 (1989).MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    C. Trimarco:Int. J. Solids Struct.,29, 1647 (1992).MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    C. A. Truesdell andR. A. Toupin:Encyclopedia of Physics, Vol. III/1 (Springer, Berlin, 1960).Google Scholar
  31. [31]
    M. Born andK. Huang:Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1988).MATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • C. Trimarco
    • 1
  1. 1.Istituto di matematiche Applicate «U. Dini» dell'UniversitàPisaItalia

Personalised recommendations