Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 109, Issue 5, pp 443–457 | Cite as

Quantum mechanics of two coupled oscillators

  • M. Sebawe Abdalla
Article

Summary

From the point of view of quantum mechanics, the problem of two coupled oscillators with two different coupling parameters is considered. By using the accurate definition of Dirac operators the wave function in both coherent state and number state (Schrödinger picture) are obtained. The Green's function and the expectation value of the energy are calculated; the transition amplitude between the coherent states when the coupling parameters are different and equal, as well as the eigenstates, are given. The constants of the motion for such a system have been also considered.

PACS 03.65.Ge

Solutions of wave equations: bound states 

PACS 42.50

Quantum optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. R. Mollow andR. J. Glauber:Phys. Rev.,16, 1076 (1967).ADSCrossRefGoogle Scholar
  2. [2]
    W. H. Louisell, A. Yariv andA. E. Siegman:Phys. Rev.,124, 1646 (1961).ADSCrossRefMATHGoogle Scholar
  3. [3]
    J. Tucker andD. F. Walls:Ann. Phys. (N. Y.),52, 1 (1969).ADSCrossRefGoogle Scholar
  4. [4]
    J. Tucker andD. F. Walls:Phys. Rev.,178, 2036 (1969).ADSCrossRefGoogle Scholar
  5. [5]
    E. Y. C. Lu:Phys. Rev. A,8, 1053 (1973).ADSCrossRefGoogle Scholar
  6. [6]
    M. S. Abdalla:Phys. Rev. A,35, 4160 (1987).ADSCrossRefGoogle Scholar
  7. [7]
    M. S. Abdalla, R. K. Colegrave andA. A. Selim:Physica A,151, 467 (1988).ADSCrossRefGoogle Scholar
  8. [8]
    M. S. Abdalla:Physica A,162, 241 (1990)ADSCrossRefGoogle Scholar
  9. [9]
    M. S. Abdalla andS. S. Hassan:Physica A,163, 822 (1990).ADSCrossRefGoogle Scholar
  10. [10]
    M. S. Abdalla:Phys. Rev. A,41, 3775 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    M. S. Abdalla:Physica A,179, 131 (1991).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    E. A. Mishkin andD. F. Walls:Phys. Rev.,185, 1618 (1969).ADSCrossRefMATHGoogle Scholar
  13. [13]
    D. F. Walls andR. Barakat:Phys. Rev. A,1, 446 (1970).ADSCrossRefGoogle Scholar
  14. [14]
    G. P. Agrawal andC. L. Mehta:J. Phys. A,7, 607 (1974).ADSCrossRefGoogle Scholar
  15. [15]
    B. Yurke, W. Schleich andD. F. Walls:Phys. Rev. A,42, 1703 (1990).ADSCrossRefMATHGoogle Scholar
  16. [16]
    M. S. Abdalla:J. Mod. Optics,39, 771 (1993);39, 1067 (1993).MathSciNetCrossRefGoogle Scholar
  17. [17]
    H. R. Lewis andW. B. Riesenfeld:J. Math. Phys.,10, 1458 (1968).MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    R. K. Colegrave andM. S. Abdalla:J. Phys. A,16, 3805 (1983).MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R. K. Colegrave, M. S. Abdalla andM. A. Mannan:J. Phys. A,17, 1567 (1984);R. K. Colegrave andM. A. Mannan:J. Math. Phys. 29, 1580 (1988) and references therein.MathSciNetADSCrossRefMATHGoogle Scholar
  20. [20]
    H. P. Yuen:Phys. Rev. A,13, 2226 (1976).ADSCrossRefGoogle Scholar
  21. [21]
    M. S. Abdalla:Physica A,202, 301 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • M. Sebawe Abdalla
    • 1
  1. 1.Department of Mathematics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations