Il Nuovo Cimento B (1971-1996)

, Volume 55, Issue 1, pp 37–51 | Cite as

Weyl-dirac theory with torsion

  • D. Gregorash
  • G. Papini


Dirac’s unified theory of gravitation and electromagnetism is extended to include torsion. The conformal invariance of the resultant theory seems to imply charge quantization for source fields. The electromagnetic-field equations in vacuum bear a strong resemblance to those of the Ginzburg-Landau formulation of superconductivity. In the general theory, which involves a cosmological constant, the conformal invariance is spontaneously broken if the ratio of the scalar curvature and the cosmological constant is negative.

Теория Вейля-Дирака с кручением


Проводится обобщение единой теории Дирака гравитации и електромагнетизма, чтобы включить кручение. Конформная инвариантность результирующей теории, по-видимому, подразумевает квантование заряда для полей источникоб. Уравнения электромагнитного поля в вакууме очень похожи на уравнения сверхпроводимости в формулировке Гинзбурга-Ландау. В общей теории, которая включает космологическую константу, конформная инвариантность нарушается спонтанно, если отношение скалярной кривизны и космологической константы является отрицательным.


Si estende la teoria unificata di Dirac della gravitazione e dell’elettromagnetismo a comprendere la torsione. L’invarianza conforme della teoria risultante sembra implicare quantizzazione di carica per campi sorgente. Le equazioni del campo elettromagnetico nel vuoto mostrano una forte somiglianza con quelle della formulazione di Ginzburg e Landau della superconduttività. Nella teoria generale, che comprende una costante cosmologica, l’invarianza conforme è spontaneamente violata se il rapporto tra la curvatura scalare e la costante cosmologica è negativo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. Weinberg:Phys. Rev. Lett.,19, 1264 (1967);A. Salam: inElementary Particle Theory, edited byN. Svartholm (New York, N. Y., 1969).CrossRefGoogle Scholar
  2. (2).
    An interesting, but rather complicated, unification of the three nongravitational interactions is reported byI. Bars, N. B. Halpern andM. Yoshimura:Phys. Rev. D,7, 1233 (1973).CrossRefGoogle Scholar
  3. (3).
    H. Weyl:Sitzungber. Preuss. Akad. Wiss., 465 (1918).Google Scholar
  4. (4).
    A. Einstein:Sitzungber. Preuss. Akad. Wiss., 478 (1918).Google Scholar
  5. (5).
    P. A. M. Dirac:Proc. R. Soc. London Ser. A,333, 403 (1973).MathSciNetCrossRefGoogle Scholar
  6. (6).
    P. A. M. Dirac:Proc. R. Soc. London Ser. A,165, 199 (1938).CrossRefGoogle Scholar
  7. (7).
    E. S. Abers andB. W. Lee:Phys. Rep. C,9, 1 (1973).CrossRefGoogle Scholar
  8. (8).
    H. B. Nielsen andP. Olesen:Nucl. Phys. B,61, 45 (1973).CrossRefGoogle Scholar
  9. (9).
    V. G. Makhankov:Phys. Rev. C,35, 1 (1978);W. Marciano andH. Pagels:Phys. Rep. C,36, 137 (1978).MathSciNetGoogle Scholar
  10. (10).
    J. Scherk:Rev. Mod. Phys.,47, 123 (1975).MathSciNetCrossRefGoogle Scholar
  11. (11).
    V. G. Makhankov:Phys. Rep. C,35, 1 (1978).MathSciNetCrossRefGoogle Scholar
  12. (12).
    F. W. Hehl:Gen. Rel. Grav.,4, 333 (1973).MathSciNetCrossRefGoogle Scholar
  13. (13).
    F. W. Hehl andP. van der Heyde:Ann. Inst. Henri Poincaré A,21, 179 (1973).Google Scholar
  14. (14).
    It is interesting to note that just such a relation between spin and torsion was first proposed byE. Cartan:C. R. Acad. Sci.,174, 593 (1922) prior to the first report of observable spin byG. E. Uhlenbeck andS. Goudsmit:Nature,117, 264 (1926).Google Scholar
  15. (15).
    See, for example,S. Kobayashi andK. Nomizu:Foundations of Differential Geometry, Vol.1 (New York, N. Y., 1963), for an exhaustive, though rather abstract, discussion of the problem of the existence of connections.Google Scholar
  16. (16).
    We extend the terminology ofS. Kobayashi andK. Nomizu:Foundations of Differential Geometry, Vol.1 (New York, N. Y., 1963).Google Scholar
  17. (17).
    J. L. Pietenpol, R. Incoul andD. Speiser:Phys. Rev. Lett.,33, 387 (1974).CrossRefGoogle Scholar
  18. (18).
    In this regard, it is interesting to compare the result here with that ofF. London:Z. Phys.,42, 375 (1927), who demonstrates charge quantization within a co-covariant flat-space theory provided only that α∮χμdx μ=2πni, where α=e 2/ℏc is the fine-structure constant andn is an integer.CrossRefGoogle Scholar
  19. (19).
    This means that energy and angular momentum can be freely transferred between the local geometry and the sources. See, for example,R. Skinner andD. Gregorash:Phys. Rev. D,14, 3314 (1976).CrossRefGoogle Scholar
  20. (20).
    See, however,R. Skinner andD. Gregorash:Phys. Rev. D,14, 3314 (1976), for a somewhat different approach yielding nonzero torsion in vacuum. Similar calculations, but of a less general nature, have been reported byK. Hayashi andR. Sasaki:Nuovo Cimento B,45, 205 (1978), and byV. de Sabata andM. Gasperini:Lett. Nuovo Cimento,23, 657 (1978).CrossRefGoogle Scholar
  21. (21).
    A geometrical interpretation of torsion may be found inR. L. Bishop andR. J. Crittenden:Geometry of Manifolds (New York, N. Y., 1964), p. 95.Google Scholar
  22. (22).
    D. Saint-James, G. Sarma andE. J. Thomas:Type II Superconductivity (New York, N. Y., 1969), p. 111.Google Scholar

Copyright information

© Società Italiana di Fisica 1980

Authors and Affiliations

  • D. Gregorash
    • 1
  • G. Papini
    • 1
  1. 1.Department of Physics and AstronomyUniversity of ReginaReginaCanada

Personalised recommendations