Biunitary transformations and ordinary differential equations.—III

Summary

In two previous papers, the authors have introduced the concept of binormal differential equations. It has been shown that invariants of the Courant-Snyder type are associated to the scalar products of the column vector associated to an ordinary differential equation and to its binormal. In this paper, we show the equivalence of the above invariant and the Lewis form. We also introduce a density matrix for a second-order differential equation and clarify the geometrical meaning of the Twiss parameters. The importance of the above results in the analysis of quantum problems such as,e.g., the evolution of squeezed states is finally stressed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. Dattoli, V. Loreto, C. Mari, M. Richetta andA. Torre:Nuovo Cimento B,106, 1357 (1991).

    MathSciNet  ADS  Article  Google Scholar 

  2. [2]

    G. Dattoli, V. Loreto, C. Mari, M. Richetta andA. Torre:Nuovo Cimento B,106, 1375 (1991).

    MathSciNet  ADS  Article  Google Scholar 

  3. [3]

    E. D. Courant andS. Snyder:Ann. Phys.,3, 1 (1958).

    ADS  Article  MATH  Google Scholar 

  4. [4]

    H. R. Lewis:J. Math. Phys.,9, 1976 (1968).

    ADS  Article  Google Scholar 

  5. [5]

    H. R. Lewis andW. B. Riesenfeld:J. Math. Phys.,10, 1458 (1969).

    MathSciNet  ADS  Article  Google Scholar 

  6. [6]

    G. Dattoli, A. Dipace andA. Torre:Phys. Rev. A,33, 2789 (1986);P. K. Aravind:J. Opt. Soc. Am. B,5, 1545 (1988).

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    K. Wodkiewicz andJ. H. Eberly:J. Opt. Soc. Am. B,2, 158 (1985).

    Article  Google Scholar 

  8. [8]

    P. Caldirola:Nuovo Cimento,18, 393 (1941);E. Kanai:Prog. Theor. Phys.,3, 440 (1948).

    Article  Google Scholar 

  9. [9]

    H. Dekker:Phys. Rep.,80, 1 (1980).

    MathSciNet  ADS  Article  Google Scholar 

  10. [10]

    G. Dattoli, S. Solimeno andA. Torre:Phys. Rev. A,35, 1668 (1987);G. Dattoli, P. Di Lazzaro andA. Torre:Nuovo Cimento B,105, 2, 165 (1990).

    ADS  Article  Google Scholar 

  11. [11]

    W. Hasse:J. Math. Phys.,16, 2005 (1975);J. Phys. A,11, 1245 (1978).

    ADS  Article  Google Scholar 

  12. [12]

    F. Sacherer: CERN Internal Report S11DL/70–12.

  13. [13]

    M. Sands:The Physics of Electron Storage Rings, an Introduction, SLAC-121 UC-28 (ACC).

  14. [14]

    K. Steffen:Basic Course on Accelerator Optics, CERN 85-19 (1985).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Dattoli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dattoli, G., Loreto, V., Mari, C. et al. Biunitary transformations and ordinary differential equations.—III. Nuovo Cim B 106, 1391–1399 (1991). https://doi.org/10.1007/BF02728368

Download citation

PACS 02.30.Hq

  • Ordinary differential equations

PACS 02.20.Tw

  • Infinite-dimensional Lie groups

PACS 42.10

  • Propagation and transmission in homogeneous media

PACS 41.80

  • Particle beams and particle optics