Biunitary transformations and ordinary differential equations.—II

Summary

We use the results of a recent reformulation of the theory of arbitrary-order differential equations in terms of non-Hermitian operators to show that the invariant binorm is associated to a generalized Courant-Snyder invariant. Furthermore, we indicate the existence of higher-order invariants associated to the Casimir operators of the group, utilized to treat higher-order equations. We also discuss the intrinsic supersymmetric nature of the theory developed. Finally, we show the relevance of the proposed mathematical technique to the design of fiberoptics transport systems.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. Dattoli, V. Loreto, C. Mari, M. Richetta andA. Torre:Nuovo Cimento B,106, 1357 (1991).

    MathSciNet  ADS  Article  Google Scholar 

  2. [2]

    H. C. Baker:Phys. Rev. Lett.,50, 1579 (1983);Phys. Rev.,30, 773 (1984);G. Dattoli, A. Torre andR. Mignani:Phys. Rev. A,42, 1467 (1990).

    ADS  Article  Google Scholar 

  3. [3]

    E. D. Courant andH. S. Snyder:Ann. Phys.,3, 1 (1958).

    ADS  Article  MATH  Google Scholar 

  4. [4]

    G. Dattoli, P. Di Lazzaro andA. Torre:Nuovo Cimento B,105, 165 (1990).

    ADS  Article  Google Scholar 

  5. [5]

    R. Dutt, A. Knare andU. P. Sukatme:Am. J. Phys.,56, 163 (1988).

    ADS  Article  Google Scholar 

  6. [6]

    C. Sukumar:J. Phys. A,18, 257 (1958).

    Google Scholar 

  7. [7]

    A. Yariv:Quantum Electronics (J. Wiley, New York, N.Y., 1975).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Dattoli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dattoli, G., Loreto, V., Mari, C. et al. Biunitary transformations and ordinary differential equations.—II. Nuovo Cim B 106, 1375–1390 (1991). https://doi.org/10.1007/BF02728367

Download citation

PACS 02.30.Hq

  • Ordinary differential equations

PACS 02.20.Tw

  • Infinite-dimensional Lie groups
  • PACS 42.10
  • Propagation and transmission in homogeneous media

PACS 41.80

  • Particle beams and particle optics