Summary
We use the results of a recent reformulation of the theory of arbitrary-order differential equations in terms of non-Hermitian operators to show that the invariant binorm is associated to a generalized Courant-Snyder invariant. Furthermore, we indicate the existence of higher-order invariants associated to the Casimir operators of the group, utilized to treat higher-order equations. We also discuss the intrinsic supersymmetric nature of the theory developed. Finally, we show the relevance of the proposed mathematical technique to the design of fiberoptics transport systems.
This is a preview of subscription content, access via your institution.
References
G. Dattoli, V. Loreto, C. Mari, M. Richetta andA. Torre:Nuovo Cimento B,106, 1357 (1991).
H. C. Baker:Phys. Rev. Lett.,50, 1579 (1983);Phys. Rev.,30, 773 (1984);G. Dattoli, A. Torre andR. Mignani:Phys. Rev. A,42, 1467 (1990).
E. D. Courant andH. S. Snyder:Ann. Phys.,3, 1 (1958).
G. Dattoli, P. Di Lazzaro andA. Torre:Nuovo Cimento B,105, 165 (1990).
R. Dutt, A. Knare andU. P. Sukatme:Am. J. Phys.,56, 163 (1988).
C. Sukumar:J. Phys. A,18, 257 (1958).
A. Yariv:Quantum Electronics (J. Wiley, New York, N.Y., 1975).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dattoli, G., Loreto, V., Mari, C. et al. Biunitary transformations and ordinary differential equations.—II. Nuovo Cim B 106, 1375–1390 (1991). https://doi.org/10.1007/BF02728367
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02728367
PACS 02.30.Hq
- Ordinary differential equations
PACS 02.20.Tw
- Infinite-dimensional Lie groups
- PACS 42.10
- Propagation and transmission in homogeneous media
PACS 41.80
- Particle beams and particle optics