Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 106, Issue 9, pp 1059–1061 | Cite as

A note on integrability and chaos of reduced self-dual Yang-Mills equations and Yang-Mills equations

  • W. H. Steeb
  • N. Euler
  • P. Mulser
Note Brevi

Summary

From Yang-Mills equations in four dimensions we can derive ordinary differential equations with chaotic behaviour. On the other hand, we can find competely integrable ordinary differential equations from self-dual Yang-Mills equations in four dimensions. We describe a connection between these integrable and chaotic systems.

Keywords

PACS 03.70 Theory of quantized fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. S. Ward:Commun. Math. Phys.,80, 563 (1981).ADSCrossRefGoogle Scholar
  2. [2]
    R. S. Ward:Gen. Relativ. Grav.,15, 105 (1983).ADSCrossRefGoogle Scholar
  3. [3]
    R. S. Ward:Nucl. Phys. B,236, 381 (1984).ADSCrossRefGoogle Scholar
  4. [4]
    R. S. Ward:Phys. Lett. A,102, 279 (1984).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    R. S. Ward:Nonlinearity,1, 671 (1988).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    L. J. Mason andG. A. J. Sparling:Phys. Lett. A,137, 29 (1989).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    W.-H. Steeb:Problems in Mathematical Physics, Vol. II:Advanced Problems (Bibliographisches Institut, Mannheim, 1990).Google Scholar
  8. [8]
    W.-H. Steeb:A Handbook of Terms Used in Chaos and Quantum Chaos (Bibliographisches Institut, Mannheim, 1991).Google Scholar
  9. [9]
    W.-H. Steeb andN. Euler:Nonlinear Evolution Equations and Painlevé Test (World Scientific, Singapore, 1988).CrossRefGoogle Scholar
  10. [10]
    W.-H. Steeb, J. A. Louw andC. M. Villet:Phys. Rev. D,33, 1174 (1986).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    P. Dahlqvist andG. Russberg:Phys. Rev. Lett.,65, 2837 (1990).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • W. H. Steeb
    • 1
  • N. Euler
    • 1
  • P. Mulser
    • 2
  1. 1.Department of Applied Mathematics and Nonlinear StudiesRand Afrikaans UniversityJohannesburgSouth Africa
  2. 2.Institut für Angewandte PhysikTechnische Hochschule DarmstadtDarmstadtDeutschland

Personalised recommendations