Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 106, Issue 9, pp 1017–1022 | Cite as

SO(3) fiber bundles and spinors

  • D. K. Ross
Article
  • 26 Downloads

Summary

We show that spin is properly described in terms of two inequivalent classes of fiber bundles with structure groupSO(3). One class accommodates only integer spin particles, while the second class includes both bosons and fermions. Thus, in particular, the usual double covering of tangent spaces and the universal covering groupSU(2) play no necessary role in the description of spinors.

Keywords

PACS 02.40 Geometry, differential geometry, and topology PACS 11.90 Other topics in general field and particle theories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Choquet-Bruhat, C. De Witt-Morette andM. Dillard-Bleick:Analysis Manifolds and Physics (North Holland, Amsterdam, 1976).Google Scholar
  2. [2]
    C. Nash andS. Sen:Topology and Geometry for Physicists (Academic Press, New York, N.Y., 1983).MATHGoogle Scholar
  3. [3]
    M. E. Mayer:Fiber Bundle Techniques in Gaugue Theories (Springer-Verlag, New York, N. Y., 1977).Google Scholar
  4. [4]
    M. Daniel andC. M. Viallet:Rev. Mod. Phys.,52, 175 (1980).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    H. G. Loos:J. Math. Phys.,8, 2114 (1967).ADSCrossRefMATHGoogle Scholar
  6. [6]
    A. Lichnerowicz:Global Theory of Connections and Holonomy Groups (Noordhoff, Leyden, 1976).CrossRefGoogle Scholar
  7. [7]
    R. Hermann:Differential Geometric Methods, Interdisciplinary Mathematics, Vol. V, VI (1975).Google Scholar
  8. [8]
    J. Milnor:Enseign. Math.,9, 198 (1963).MathSciNetMATHGoogle Scholar
  9. [9]
    K. Bichteler:J. Math. Phys.,9, 813 (1968).ADSCrossRefMATHGoogle Scholar
  10. [10]
    R. Geroch:J. Math. Phys.,9, 1739 (1968);11, 343 (1970).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    R. Gilmore:Lie Groups, Lie Algebras, and some of their Applications (Wiley, New York, N.Y., 1974).MATHGoogle Scholar
  12. [12]
    T. T. Wu andC. N. Yang:Phys. Rev. D,12, 3845 (1975).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N. Steenrod:The Topology of Fibre Bundles (Princeton University Press, Princeton, N.J., 1951).Google Scholar

Copyright information

© Società Italiana di Fisica 1991

Authors and Affiliations

  • D. K. Ross
    • 1
  1. 1.Physics DepartmentIowa State UniversityAmes

Personalised recommendations