Journal of Genetics

, Volume 80, Issue 2, pp 63–75 | Cite as

K-selection, α-selection, effectiveness, and tolerance in competition: Density-dependent selection revisited

  • Amitabh Joshi
  • N. G. Prasad
  • Mallikarjun Shakarad


In theDrosophila literature, selection for faster development and selection for adapting to high density are often confounded, leading, for example, to the expectation that selection for faster development should also lead to higher competitive ability. At the same time, results from experimental studies on evolution at high density do not agree with many of the predictions from classical density-dependent selection theory. We put together a number of theoretical and empirical results from the literature, and some new experimental results onDrosophila populations successfully subjected to selection for faster development, to argue for a broader interpretation of density-dependent selection. We show that incorporating notions of α-selection, and the division of competitive ability into effectiveness and tolerance components, into the concept of density-dependent selection yields a formulation that allows for a better understanding of the empirical results. We also use this broader formulation to predict that selection for faster development inDrosophila should, in fact, lead to the correlated evolution of decreased competitive ability, even though it does lead to the evolution of greater efficiency and higher population growth rates at high density when in monotypic culture.


density-dependent selection competition development time urea tolerance feeding rate Drosophila melanogaster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson W. W. 1971 Genetic equilibrium and population growth under density-dependent selection.Am. Nat. 105, 489–498.CrossRefGoogle Scholar
  2. Anderson W. W. and Arnold J. 1983 Density-regulated selection with genotypic interactions.Am. Nat. 121, 649–655.CrossRefGoogle Scholar
  3. Asmussen M. A. 1983 Density-dependent selection incorporating intraspecific competition. II. A diploid model.Genetics 103, 335–350.PubMedGoogle Scholar
  4. Atkinson W. D. 1979 A field investigation of larval competition in domesticDrosophila.J. Anim. Ecol. 48, 91–102.CrossRefGoogle Scholar
  5. Begon M. E., Harper J. L. and Townsend C. R. 1991Ecology: individuals, populations and communities. Blackwell Scientific, Oxford.Google Scholar
  6. Bell G. 1997Selection: the mechanism of evolution. Chapman and Hall, New York.Google Scholar
  7. Borash D. J. and Shimada M. 2001 Genetics of larval urea and ammonia tolerance and cross-tolerance inDrosophila melanogaster.Heredity 86, 658–667.PubMedCrossRefGoogle Scholar
  8. Borash D. J., Gibbs A. G., Joshi A. and Mueller L. D. 1998 A genetic polymorphism maintained by natural selection in a temporally varying environment.Am. Nat. 151, 148–156.CrossRefPubMedGoogle Scholar
  9. Borash D. J., Teótonio H., Rose M. R. and Mueller L. D. 2000 Density-dependent natural selection inDrosophila: correlations between feeding rate, development time and viability.J. Evol. Biol. 13, 181–187.CrossRefGoogle Scholar
  10. Boyce M. S. 1984 Restitution ofr- and K-selection as a model of density-dependent natural selection.Annu. Rev. Ecol. Syst. 15, 427–447.Google Scholar
  11. Case T. J. and Gilpin M. E. 1974 Interference competition and niche theory.Proc. Natl. Acad. Sci. USA 71, 3073–3077.PubMedCrossRefGoogle Scholar
  12. Charlesworth B. 1971 Selection in density-regulated populations.Ecology 52, 469–474.CrossRefGoogle Scholar
  13. Chippindale A. K., Alipaz J. A., Chen H.-W. and Rose M. R. 1997 Experimental evolution of accelerated development inDrosophila. 1. Developmental speed and larval survival.Evolution 51, 1536–1551.CrossRefGoogle Scholar
  14. Clark C. E. 1983 On ther-K tradeoff in density-dependent selection. InPopulation biology (ed. H. I. Freedman and C. Strobeck), pp. 72–78. Springer, Berlin.Google Scholar
  15. Clarke B. 1972 Density-dependent selection.Am. Nat. 106, 1–13.CrossRefGoogle Scholar
  16. Clarke J. M., Maynard Smith J. and Sondhi K. C. 1961 Asymmetrical response to selection for rate of development inDrosophila subobscura.Genet. Res. 2, 70–81.Google Scholar
  17. Dobzhansky T. 1950 Evolution in the tropics.Am. Sci. 38, 209–221.Google Scholar
  18. Eggleston P. 1985 Variation for aggression and response in the competitive interactions ofDrosophila melanogaster.Heredity 54, 43–51.Google Scholar
  19. Freeman M. F. and Tukey J. W. 1950 Transformations related to the angular and the square root.Ann. Math. Stat. 21, 607–611.Google Scholar
  20. Gadgil M. and Bossert W. H. 1970 Life historical consequences of natural selection.Am. Nat. 104, 1–24.CrossRefGoogle Scholar
  21. Gill D. E. 1972 Intrinsic rates of increase, saturation densities, and competitive ability. I. An experiment withParamecium.Am. Nat. 106, 461–471.CrossRefGoogle Scholar
  22. Gill D. E. 1974 Intrinsic rates of increase, saturation densities, and competitive ability. II. The evolution of competitive ability.Am. Nat. 108, 103–116.CrossRefGoogle Scholar
  23. Gilpin M. E., Case T. J. and Ayala F. J. 1976 θ-selection.Math. Biosci. 32, 131–139.Google Scholar
  24. Goldberg D. E. and Landa K. 1991 Competitive effect and response: hierarchies and correlated traits in the early stages of competition.J. Ecol. 79, 1013–1030.CrossRefGoogle Scholar
  25. Hairston N. G., Tinkle D. W. and Wilbur H. M. 1970 Natural selection and the parameters of population growth.J. Wild. Manage. 34, 681–690.CrossRefGoogle Scholar
  26. Hallam T. G. and Clark C. E. 1981 Non-autonomous logistic equations as models of populations in a deteriorating environment.J. Theor. Biol. 93, 303–311.CrossRefGoogle Scholar
  27. Hartl D. L. and Clark A. G. 1997Principles of population genetics, 3rd edition. Sinauer, Sunderland.Google Scholar
  28. Hemmat M. and Eggleston P. 1988 Competitive interactions inDrosophila melanogaster: recurrent selection for aggression and response.Heredity 60, 129–137.PubMedGoogle Scholar
  29. Hemmat M. and Eggleston P. 1990 The biometrical genetics of competitive parameters inDrosophila melanogaster.Heredity 64, 223–231.PubMedGoogle Scholar
  30. Joshi A. 1997 Laboratory studies of density-dependent selection: adaptations to crowding inDrosophila melanogaster.Curr. Sci. 72, 555–561.Google Scholar
  31. Joshi A. and Mueller L. D. 1988 Evolution of higher feeding rate inDrosophila due to density-dependent natural selection.Evolution 42, 1090–1092.CrossRefGoogle Scholar
  32. Joshi A. and Mueller L. D. 1993 Directional and stabilizing density-dependent natural selection for pupation height inDrosophila melanogaster.Evolution 47, 176–184.CrossRefGoogle Scholar
  33. Joshi A. and Mueller L. D. 1996 Density-dependent natural selection inDrosophila, trade-offs between larval food acquisition and utilization.Evol. Ecol. 10, 463–474.CrossRefGoogle Scholar
  34. Joshi A. and Thompson J. N. 1995 Alternative routes to the evolution of competitive ability in two competing species ofDrosophila.Evolution 49, 616–625.CrossRefGoogle Scholar
  35. Luckinbill L. S. 1978r andK selection in experimental populations ofEscherichia coli.Science 201, 1201–1203.CrossRefGoogle Scholar
  36. Luckinbill L. S. 1979 Selection and ther-K continuum in experimental populations of protozoa.Am. Nat. 113, 427–437.CrossRefGoogle Scholar
  37. MacArthur R. H. and Wilson E. O. 1967The theory of island biogeography. Princeton University Press, Princeton.Google Scholar
  38. Matessi C. and Jayakar S. D. 1976 Models of density-frequency dependent selection for the exploitation of resources. I. Intraspecific competition. InPopulation genetics and ecology (ed. S. Karlin and E. Nevo), pp. 702–721. Academic Press, New York.Google Scholar
  39. Mather K. and Caligari P. D. S. 1983 Pressure and response in competitive interactions.Heredity 51, 435–454.Google Scholar
  40. Mueller L. D. 1988a Density-dependent population growth and natural selection in food-limited environments: theDrosophila model.Am. Nat. 132, 786–809.CrossRefGoogle Scholar
  41. Mueller L. D. 1988b Evolution of competitive ability inDrosophila due to density-dependent natural selection.Proc. Natl. Acad. Sci. USA 85, 4383–4386.PubMedCrossRefGoogle Scholar
  42. Mueller L. D. 1990 Density-dependent natural selection does not increase efficiency.Evol. Ecol. 4, 290–297.CrossRefGoogle Scholar
  43. Mueller L. D. 1995 Adaptation and density-dependent natural selection. InGenetics of natural populations: the continuing importance of Theodosius Dobzhansky (ed. L. Levine), pp. 222–238. Columbia University Press, New York.Google Scholar
  44. Mueller L. D. 1997 Theoretical and empirical examination of density-dependent selection.Annu. Rev. Ecol. Syst. 28, 269–288.CrossRefGoogle Scholar
  45. Mueller L. D. and Ayala F. J. 1981 Trade-off betweenr- selection and K-selection inDrosophila populations.Proc. Natl. Acad. Sci. USA 78, 1303–1305.PubMedCrossRefGoogle Scholar
  46. Mueller L. D. and Sweet V. F. 1986 Density-dependent natural selection inDrosophila: evolution of pupation height.Evolution 40, 1354–1356.CrossRefGoogle Scholar
  47. Mueller L. D., Guo P.-Z. and Ayala F. J. 1991 Density-dependent natural selection and trade-offs in life history traits.Science 253, 433–435.PubMedCrossRefGoogle Scholar
  48. Mueller L. D., Joshi A. and Borash D. J. 2000 Does population stability evolve?Ecology 81, 1273–1285.CrossRefGoogle Scholar
  49. Nunney L. 1990Drosophila on oranges: colonization, competition and coexistence.Ecology 71, 1904–1915.CrossRefGoogle Scholar
  50. Nunney L. 1996 The response to selection for fast larval developmentin Drosophila melanogaster and its effect on adult weight, an example of a fitness trade-off.Evolution 50, 1193–1204.CrossRefGoogle Scholar
  51. Parry G. D. 1981 The meanings ofr- and K-selection.Oecologia 48, 260–264.CrossRefGoogle Scholar
  52. Partridge L. and Fowler K. 1992 Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster.Evolution 46, 76–91.CrossRefGoogle Scholar
  53. Partridge L. and Fowler K. 1993 Responses and correlated responses to artificial selection on thorax length inDrosophila melanogaster.Evolution 47, 213–226.CrossRefGoogle Scholar
  54. Peart D. R. 1989 Species interactions in a successional grassland. II. Colonization of vegetated sites.J. Ecol. 77, 252–266.CrossRefGoogle Scholar
  55. Pianka E. R. 1970 Onr- and K-selection.Am. Nat. 104, 952–956.CrossRefGoogle Scholar
  56. Pianka E. R. 1972r andK selection orb andd selection.Am. Nat. 106, 581–588.CrossRefGoogle Scholar
  57. Pianka E. R. 1988Evolutionary ecology, 4th edition. Harper and Row, New York.Google Scholar
  58. Prasad N. G., Shakarad M., Gohil V. M., Sheeba V., Rajamani M. and Joshi A. 2000 Evolution of reduced pre-adult viability and larval growth rate in laboratory populations ofDrosophila melanogaster selected for shorter development time.Genet. Res. 76, 249–259.PubMedCrossRefGoogle Scholar
  59. Prasad N. G., Shakarad M., Anitha D., Rajamani M. and Joshi A. 2001 Correlated responses to selection for faster development and early reproduction inDrosophila: the evolution of larval traits.Evolution 55, 1363–1372.PubMedGoogle Scholar
  60. Prout T. and Barker J. S. F. 1989 Ecological aspects of the heritability of body size inDrosophila buzzatii.Genetics 123, 803–813.PubMedGoogle Scholar
  61. Robertson F. W. 1963 The ecological genetics of growth inDrosophila. 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet.Genet. Res. 4, 74–92.CrossRefGoogle Scholar
  62. Roughgarden J. 1971 Density-dependent natural selection.Ecology 52, 453–468.CrossRefGoogle Scholar
  63. Santos M., Ruiz A., Barbadilla A., Quezada-Diaz J. E., Hasson E. and Fontdevila A. 1988 The evolutionary history ofDrosophila buzzatii. XIV. Larger flies mate more often in nature.Heredity 61, 255–262.Google Scholar
  64. Santos M., Borash, D. J., Joshi A., Bounlutay N. and Mueller L. D. 1997 Density-dependent natural selection inDrosophila: evolution of growth rate and body size.Evolution 51, 420–432.CrossRefGoogle Scholar
  65. Shiotsugu J., Leroi A. M., Yashiro M., Rose M. R. and Mueller L. D. 1997 The symmetry of correlated responses in adaptive evolution: an experimental study usingDrosophila.Evolution 51, 163–172.CrossRefGoogle Scholar
  66. Sokolowski M. B., Pereira H. S. and Hughes K. 1997 Evolution of foraging behavior inDrosophila by density-dependent selection.Proc. Natl. Acad. Sci. USA 94, 7373–7377.PubMedCrossRefGoogle Scholar
  67. StatisticaTM 1995Statistica Vol. I: general conventions and statistics I. Statsoft Inc., Tulsa.Google Scholar
  68. Stearns S. C. 1977 The evolution of life-history traits, a critique of the theory and a review of the data.Annu. Rev. Ecol. Syst. 8, 145–171.CrossRefGoogle Scholar
  69. Tantawy A. O. and El-Helw M. R. 1970 Studies on natural populations ofDrosophila. IX. Some fitness components and their heritabilities in natural and mutant populations ofDrosophila melanogaster.Genetics 64, 79–91.PubMedGoogle Scholar
  70. Vasi F., Travisano M. and Lenski R. E. 1994 Long term experimental evolution inEscherichia coli. II. Changes in life-history traits during adaptation to a seasonal environment.Am. Nat. 144, 432–456.CrossRefGoogle Scholar
  71. Wilkinson G. S. 1987 Equilibrium analysis of sexual selection inDrosophila melanogaster.Evolution 41, 11–21.CrossRefGoogle Scholar
  72. Zwaan B. J., Bijlsma R. and Hoekstra R. F. 1995 Artificial selection for developmental time inDrosophila melanogaster in relation to the evolution of ageing: direct and correlated responses.Evolution 49, 635–648.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • Amitabh Joshi
    • 1
  • N. G. Prasad
    • 1
  • Mallikarjun Shakarad
    • 1
  1. 1.Evolutionary Biology Laboratory, Evolutionary and Organismal Biology UnitJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur, BangaloreIndia

Personalised recommendations