Il Nuovo Cimento A (1965-1970)

, Volume 66, Issue 2, pp 221–228 | Cite as

Gravitation and broken scale invariance

  • G. Turchetti
  • G. Venturi


We examine the consequences, in a simple scalar-field model, of the relation between the breaking of scale invariance and gravitation.

Гравитация и нарущенная масщтабная инвариантность


В рамках простой модели скалярного поля исследуются следствия соотнощения между нарущением масщтабной инвариантностью и гравитацией.


In un semplice modello con campo scalare si studiano le conseguenze della connessione tra la rottura dell’invarianza di scala e la gravitazione.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    For a review see,e.g.,J. Ellis:Grand unified theories, preprint TH. 2942, CERN.Google Scholar
  2. (2).
    P. Minkowski:Phys. Lett. B,71, 419 (1977);A. Zee:Phys. Rev. Lett.,42, 417 (1979);Phys. Rev. D,23, 858 (1981).CrossRefADSGoogle Scholar
  3. (3).
    S. Adler:Phys. Rev. Lett.,44, 1567 (1980);B. Hasslacher andE. Mottola:Phys. Lett. B,95, 237 (1980).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    S. Deser:Ann. Phys. (N. Y.),59, 248 (1970);P. G. O. Freund:Ann. Phys. (N. Y.),84, 440 (1974);F. Englert, E. Gunzig, C. Truffin andP. Windey:Phys. Lett. B,57, 73 (1975);V. De Alfaro, S. Fubini andG. Furlan:Nuovo Cimento B,57, 227 (1980);G. Domokos:Broken Weyl symmetry, DESY preprint 76/24 (1976).MathSciNetCrossRefADSGoogle Scholar
  5. (5).
    We follow the metric conventions ofC. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (San Francisco, Cal., 1973). Further we observe that Greek subscripts (or superscripts)αβ andαβ denote partial and covariant differentiations, respectively. We use units for whichħ=c=1.Google Scholar
  6. (6).
    V. De Alfaro, S. Fubini andG. Furlan:Phys. Lett. B,97, 67 (1980).MathSciNetCrossRefADSGoogle Scholar
  7. (7).
    S. Fubini:Nuovo Cimento A,34, 521 (1976).CrossRefADSGoogle Scholar
  8. (8).
    V. De Alfaro, S. Fubini andG. Furlan:Nuovo Cimento A,50, 523 (1979).CrossRefADSGoogle Scholar
  9. (9).
    For a discussion of solutions to the Klein-Gordon equation in a conformally flat space seeD. Ray:J. Math. Phys. (N. Y.),18, 1899 (1977).CrossRefADSGoogle Scholar
  10. (10).
  11. (11).
    J. Dreitlein:Phys. Rev. Lett.,33, 1243 (1974).CrossRefADSGoogle Scholar
  12. (12).
    For a review seeA. D. Linde:Rep. Prog. Phys.,42, 389 (1979).CrossRefADSGoogle Scholar
  13. (13).
    C. Brans andR. Dicke:Phys. Rev.,124, 925 (1961);125, 2163 (1962). In particular (γ/2)σ 2=ϕ andγ=1/4ω.MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1981

Authors and Affiliations

  • G. Turchetti
    • 1
    • 2
  • G. Venturi
    • 1
    • 2
  1. 1.Istituto di Fisica dell’UniversitàBolognaItalia
  2. 2.Istituto Nazionale di Fisica NucleareSezione di BolognaItalia

Personalised recommendations