Lettere al Nuovo Cimento (1971-1985)

, Volume 15, Issue 5, pp 157–160 | Cite as

On reggeon field theories and nonzero vacuum expectation values

  • G. Venturi


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    For a review see:H. D. I. Abarbanel, J. B. Bronzan, R. L. Sugar andA. R. White:Phys. Reports C,21, 120 (1975).ADSGoogle Scholar
  2. (2).
    V. M. Gribov:Žurn. Ėksp. Teor. Fiz.,53, 654 (1967) (English translation:Sov. Phys. JETP,26 414 (1968)).Google Scholar
  3. (3).
    S. S. Pinsky andV. Rabl:Phys. Rev. D,10, 4177 (1974).ADSCrossRefGoogle Scholar
  4. (4).
    H. D. I. Abarbanel:Phys. Lett.,49 B, 61 (1974).ADSCrossRefGoogle Scholar
  5. (5).
    Our metric is given by δμν(μ,ν=1,2,3,) (μ, ν=1, 2, 3) andx 3=it. Naturally the introduction of a suitable mass scale is necessary and in particular we shall work in units for which a normal Reggeon trajectory (f, ϱ) slope is equal to unity. This is a natural choice, for example in dual models.Google Scholar
  6. (6).
    R. Finkelstein, R. Le Levier andM. Ruderman:Phys. Rev.,83, 326 (1951).ADSCrossRefMATHGoogle Scholar
  7. (7).
    Although our final expressions are formally identical to those exhibited in—ref.(4). they are essentially different since our vacuum expectation value is imaginary and the spontaneous symmetry breaking occurs not from a pomeron intercept above one but one below one. In both cases the final intercept is one.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1976

Authors and Affiliations

  • G. Venturi
    • 1
    • 2
  1. 1.Istituto di Fisica dell’UniversitàBologna
  2. 2.Istituto Nazionale di Fisica NucleareSezione di BolognaBolognaItaly

Personalised recommendations