Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 18, Issue 4, pp 615–634 | Cite as

Regularization of the lee model through analytic continuation of operators

  • M. Marinaro
  • L. Mercaldo
  • G. Scarpetta
Article

Summary

A procedure has been developed that allow us to obtain from the formal Hamiltonian of the Lee model witnY-interaction the renormalized Hamiltonian. The method is based on the analytic continuation of field operators.

Регуляриэация модели Ли при помоши аналитического продолжения операторов

Реэюме

Была раэвита процедура, которая поэволяет нам получить иэ формаль-ного Гамильтониана модели Ли сY вэаимодействием перенормированный Гамиль-тониан. Этот метод основывается на аналитическом продолжении операторов поля.

Riassunto

Si sviluppa un metodo che ci permette di ottenere dall’hamiltoniana formale del modello di Lee, con interazioneY, l’hamiltoniana rinormalizzata. Il metodo è basato sul prolungamento analitico di operatori di campo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. N. Bogoliubov andD. V. Shirkov:Introduction to the Theory of Quantized Fields (New York, 1959);S. Schweber:An Introduction to Relativistic Quantum Theory (Evanston, Ill., 1961);J. D. Bjorken andS. D. Drell:Relativistic Quantum Fields (New York, 1965).Google Scholar
  2. (2).
    F. A. Berezin:The Methods of Second Quantization (1966).Google Scholar
  3. (3).
    E. R. Caianiello, F. Guerra andM. Marinaro:Nuovo Cimento,60 A, 713 (1969);M. Marinaro:Nuovo Cimento,9 A, 62 (1972);E. R. Caianiello:Combinatorics and renormalization in quantum field theory, in press,Frontiers in Physics (New York).MathSciNetCrossRefADSGoogle Scholar
  4. (4).
    J. G. Valatin:Proc. Roy. Soc.,222, 93 (1954);225, 535 (1954);226, 254 (1954);W. Zimmermann:Comm. Math. Phys.,6, 161 (1967).MATHMathSciNetCrossRefADSGoogle Scholar
  5. (5).
    T. D. Lee:Phys. Rev.,95, 1329 (1954);F. Y. Yndurain:Journ. Math. Phys.,7, 1133 (1966);9, 1423 (1968);F. Guerra:Nuovo Cimento,68 A, 258 (1970).CrossRefADSGoogle Scholar
  6. (6).
    F. Guerra andM. Marinaro:Nuovo Cimento,60 A, 756 (1969);F. Guerra:Nuovo Cimento,1 A, 523 (1971);E. R. Speer:Journ. Math. Phys.,9, 1404 (1968).MathSciNetCrossRefADSGoogle Scholar
  7. (8).
    I. M. Gel’fand andG. E. Shilov:Generalized Functions, Vol.1 (New York, 1964).Google Scholar
  8. (9).
    K. Yoshida:Functional Analysis (Berlin, 1968);T. Kato:Perturbation Theory for Linear Operators (Berlin, 1966).Google Scholar
  9. (10).
    E. R. Caianiello:Nuovo Cimento,11, 492 (1954).MATHMathSciNetCrossRefGoogle Scholar
  10. (11).
    R. W. Johnson:Journ. Math. Phys.,11, 2161 (1970) and references quoted therein.CrossRefADSGoogle Scholar
  11. (12).
    F. Esposito andU. Esposito:Nuovo Cimento,6 A, 277 (1971).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1973

Authors and Affiliations

  • M. Marinaro
    • 1
    • 2
  • L. Mercaldo
    • 1
    • 2
  • G. Scarpetta
    • 1
    • 2
  1. 1.Istituto di Fisica Teorica dell’UniversitàNapoli
  2. 2.Istituto di Fisica dell’UniversitàSalerno

Personalised recommendations