Advertisement

Lettere al Nuovo Cimento (1971-1985)

, Volume 24, Issue 12, pp 443–448 | Cite as

Cabibbo angle and CP violation in a gauge model with discrete symmetry

  • M. D’Anna
  • A. Masiero
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. Fritzsch:Phys. Lett.,70 B, 436 (1977); CERN preprint TH-2433 (1977);F. Wilczek andA. Zee:Phys. Lett.,70 B, 418 (1977);A. Ebrahim:Phys. Lett.,73 B, 181 (1978);T. Hagiwara, T. Kitazoe, G. B. Mainland andK. Tanaka:Phys. Lett.,76 B, 602 (1978);T. Kitazoe andK. Tanaka:Phys. Rev. D,18, 3476 (1978).ADSCrossRefGoogle Scholar
  2. (2).
    G. ’t Hooft:Phys. Rev. Lett.,37, 8 (1976);Phys. Rev. D,14, 3432 (1976);A. A. Belavin, A. M. Polyakov, A. S. Schwartz andY. S. Tuypkin:Phys. Lett.,59 B, 85 (1975);R. D. Peccei andH. P. Quinn:Phys. Rev. Lett.,38, 1440 (1977);Phys. Rev. D,16, 1791 (1977);R. Jackiw andC. Rebbi:Phys. Rev. Lett.,37, 172 (1976);S. Weinberg:Phys. Rev. Lett.,40, 223 (1978);F. Wilczek:Phys. Rev. Lett.,40, 279 (1978); and talk atB. Lee:Memorial Conference, 20 October 1977.ADSCrossRefGoogle Scholar
  3. (3).
    H. Georgi: preprint HUPT 78-A010 (1978);M. A. B. Beg andH. S. Tsao: preprint C00-2232B-154 (1978);R. N. Mohapatra andB. Senjanovic:Phys. Lett.,79 B, 283 (1978).Google Scholar
  4. (4).
    When one tries to solve the «strong CP» problem in the so-called «natural way» (according to the classification due toWilczek (2)Phys. Rev. Lett.,40, 279 (1978); a connection emerges between the «strong CP» and the quark masses. In this note, we shall adopt exclusively this «natural way». A general discussion of the origin of the «strong CP» problem is given in ref. (2)G. ’t Hooft:Phys. Rev. Lett.,37, 8 (1976);Phys. Rev. D,14, 3432 (1976);A. A. Belavin, A. M. Polyakov, A. S. Schwartz andY. S. Tuypkin:Phys. lett.,59 B, 85 (1975);R. D. Peccei andH. P. Quinn:Phys. Rev. Lett.,38, 1440 (1977);Phys. Rev. D,16, 1791 (1977);R. Jackiw andC. Rebbi:Phys. Rev. Lett.,37, 172 (1976);S. Weinberg:Phys. Rev. Lett.,40, 223 (1978);F. Wilczek:Phys. Rev. Lett.,40, 279 (1978); and talk atB. Lee:Memorial Conference, 20 October 1977. while ref. (3)H. Georgi: preprint HUPT 78-A010 (1978);M. A. B. Beg andH. S. Tsao: preprint C00-2232B-154 (1978);R. N. Mohapatra andB. Senjanovic:Phys. Lett.,79 B, 283 (1978). presents some examples of «natural solution».Google Scholar
  5. (5).
    R.N. Mohapatra andD. P. Sidhu: preprint CCNY-HEP 77/9 (1977);R. N. Mohapatra andB. Senjanovic:Phys. Lett.,73 B, 176 (1978).Google Scholar
  6. (6).
    R. Gatto, G. Marchio andF. Strocchi:Phys. Lett.,80 B, 265 (1979);G. F. Sartori: preprint UGVA-1978/12-187.ADSCrossRefMATHGoogle Scholar
  7. (7).
    S. Weinberg:Phys. Lett.,29, 388 (1972);J. C. Pati andA. Salam:Phys. Rev. D,10, 275 (1974);R. N. Mohapatra andJ. C. Pati:Phys. Rev. D,11, 566, 2558 (1975);R. M. Mohapatra andD. P. Sidhu:Phys. Rev. D,16, 2843 (1977);A. De Rüjula, H. Georgi andS. L. Glashow:Ann. of Phys.,109, 292 (1977);R. N. Mohapatra, F. N. Paige andD. P. Sidhu:Phys. Rev. D,17, 2462 (1978).CrossRefGoogle Scholar
  8. (8).
    R. N. Mohapatra andD. P. Sidhu: preprint CCNY-HEP 77/9 (1977).Google Scholar
  9. (9).
    R. N. Mohapatra andJ. Pati:Phys. Rev. D,11, 566, 2558 (1975).ADSCrossRefGoogle Scholar
  10. (10).
    S. W. Weinberg:Phys. Rev. Lett.,37, 657 (1976);N. G. Deshpande andE. Ma:Phys. Rev. D,16, 1583 (1977);R. N. Mohapatra andB. Senjamovic:Phys. Lett.,79 B, 283 (1978).ADSCrossRefGoogle Scholar
  11. (11).
    H. Georgi andA. Pais:Phys. Rev. D,10, 1246 (1974).ADSCrossRefGoogle Scholar
  12. (12).
    R. N. Mohapatra andB. Senjanovic:Phys. Lett.,79 B, 283 (1978).ADSCrossRefGoogle Scholar
  13. (13).
    H. Fritzsch:Phys. Lett.,70 B, 436 (1977); CERN preprint TH-2433 (1977).ADSCrossRefGoogle Scholar
  14. (14).
    The converse is also true. Let us consider in the u-c sector, the Hermitian mass matrixM (+)(i,j=1,2), which should be diagonalized by the orthogonal matrixO(+)). One gets then the relation (1) tg2 θ (+). In order to obtain relation (2), we must imposeM 11=0.Google Scholar
  15. (15).
    Throughout this letter, LR symmetry means some discrete symmetry which leaves invariant the kinetic part of the Lagrangian and under whichW LW R (16).ADSCrossRefGoogle Scholar
  16. (16).
    P. Binetruy, M. K. Gaillard andZ. Kunszt:Nucl. Phys.,144 B, 141 (1978).ADSCrossRefGoogle Scholar
  17. (17).
    R. N. Mohapatra: in the1974 AIP Conference Proceedings, No. 23, edited byC. E. Carlson.Google Scholar
  18. (18).
    It is worthwhile to note that an interchange of the role of ϕ1 and ϕ2 does not lead to any acceptable definition of discrete symmetry.Google Scholar
  19. (19).
    The naturalness of the symmetry breaking scheme is guaranteed by the considered discrete symmetry, supplemented by an additional one, preserving all the features of the theory. A detailed discussion will be given elsewhere.Google Scholar
  20. (20).
    We note that the matricesM (+),M (−) obtained byMohapatra andSenjanovic in ref. (6). give arg (detM (+)·detM (−)≠0.ADSCrossRefGoogle Scholar
  21. (21).
    S. Weinberg: inFestschrift in honour of I. I. Rabi, preprint HUTP-77/A057 (1977).Google Scholar

Copyright information

© Società Italiana di Fisica 1979

Authors and Affiliations

  • M. D’Anna
    • 1
    • 2
  • A. Masiero
    • 3
  1. 1.Istituto di Fisica «G. Galilei» dell’UniversitàPadova
  2. 2.Istituto Nazionale di Fisica NucleareSezione di PadovaItalia
  3. 3.Scuola di Perfezionamento in Fisica dell’UniversitàPadovaItalia

Personalised recommendations