Il Nuovo Cimento B (1971-1996)

, Volume 107, Issue 10, pp 1173–1183 | Cite as

Stationary tensor fields in relativistic continuum mechanics

  • A. R. Pawar


A tensor field in relativistic continuum mechanics is said to be stationary iff its Jaumann derivative with respect to the timelike unit flow vector vanishes. The gravitational potentials, geodesic flow are always stationary. Ifg ab is the metric tensor, then the 3-dimensional projection operatorg ab −u a u b is found to be stationary when and only when the first curvature of the streamline vanishes. The necessary and sufficient conditions for the stationary character of the 2-dimensional projection operatorg ab −u a u b +P a P b are found to beK2+(1/2)(γ123γ123)=0,γ124=γ123, whereP a is the unit acceleration vector field,K2 is the second curvature or torsion andγABC are the Ricci-coefficients of rotation formed from the relativistic Serret-Frenet formulae for the stream line of a particle in the continuum. The nonstationary character of the relativistic Serret-Frenet tetrad is also established. Further it is shown thatJ u J u (g ab −u a u b )=0 iffK1=0,γ124, whereJ u is the Jaumann transport operator.

PACS 47.75

Relativistic fluid dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. G. Oldroyd:Proc. R. Soc. Lond., Ser. A,316, 1 (1970).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    W. Prager:Introduction to Mechanics of Continua (Academic Press, New York, N.Y., 1961), p. 156.Google Scholar
  3. [3]
    L. Radhakrishna, T. H. Date andL. N. Katkar:Gen. Relativ. Gravit.,13, 939 (1981).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    B. Carter andH. Quintana:Phys. Rev. D,16, 2928 (1977).ADSCrossRefGoogle Scholar
  5. [5]
    L. N. Katkar:Gen. Relativ. Gravit.,21, 997 (1989).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1992

Authors and Affiliations

  • A. R. Pawar
    • 1
  1. 1.Nya. Tatyasaheb Athalaye Arts and Ved. S.R. SapreCommerce CollegeDeorukhIndia

Personalised recommendations