Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 1, pp 85–92 | Cite as

WKB approximation and renormalizability of the Wheeler-DeWitt equation

  • T. Horiguchi


We try to solve the Wheeler-DeWitt (WDW) equation in the WKB expansion by using heat-kernel regularization. An approximate wave function of the WDW equation up to terms that contain second-order spatial gradients is given. We also discuss the renormalization group equation for the wave function.


04.60 Quantum theory of gravitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DeWitt B. S.,Phys. Rev.,160 (1967) 1113.CrossRefMATHADSGoogle Scholar
  2. [2]
    Horiguchi T.,Nuovo Cimento B,110 (1995) 839; Preprints KIFR-94-01Dimensional Reduction in a Quantum Universe; Nuovo Cimento B,111 (1996) 49; KIFR-94-03,On the Renormalizability of the Wheeler-DeWitt Equation.MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    Mansfield P.,Nucl. Phys. B,418 (1994) 113.MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    DeWitt B. S.,Dynamical Theory of Groups and Fields (Gordon and Breach, Inc., New York, N.Y.) 1965.MATHGoogle Scholar
  5. [5]
    Parry J., Salopek D. S. andStewart J. M.,Phys. Rev. D,49 (1994) 2872;Salopek D. S. andStewart J. M.,Class. Quantum Grav.,9 (1992) 1943.MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    Alvarez E.,Rev. Mod. Phys.,61 (1989) 561.CrossRefADSGoogle Scholar
  7. [7]
    Ashtekar A.,Lecture on Non-Perturbative Canonical Gravity (World Scientific, Singapore) 1991 and references therein.CrossRefGoogle Scholar
  8. [8]
    Hartle J. B. andHawking S. W.,Phys. Rev. D,28 (1983) 2960.MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    Vilenkin A.,Phys. Rev. D,37 (1988) 888;Phys. Rev. D,33 (1986) 3560.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • T. Horiguchi
    • 1
  1. 1.Kibi Institute of Fundamental ResearchOkayama-kenJapan

Personalised recommendations