Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 105, Issue 3, pp 259–278 | Cite as

Phenomenological consequences of a geometric model with limited proper acceleration

  • E. R. Caianiello
  • M. Gasperini
  • G. Scarpetta
Article

Summary

We discuss the possibility of testing the hypothesis that the proper acceleration of a massive particle cannot exceed a natural limit, determined by its rest mass. To this aim we consider the phenomenological consequences of a geometric scheme in which the space-time, at a microscopic level, is to be regarded as a four-dimensional hypersurface locally embedded in a higher-dimensional phase space. As a first consequence we find that the energy of a uniformly and linearly accelerated particle should be quantized. Moreover, in this context the universality of the gravitational interaction is violated, but no contradiction is found with the upper bounds deduced from the present tests of the equivalence principle.

PACS

04.50 Unified field theories and other theories of gravitation 

PACS

04.80 Experimental tests of general relativity and observations of gravitational radiation 

PACS

04.90 Other topics in relativity and gravitation 

Феноменологические следствия геометрической модели с ограниченным собственным ускорением

Резюме

Мы обсуждаем возможность проверки гипотезы, что собственное ускорение массивной частицы не может превышать естественного предела, который определяется массой покоя частицы. С этой целью мы рассматриваем феноменологические следствия геометрической схемы, в которой пространствовремя на микроскопическом уровне следует рассматривать как четырехмерное гиперпространство, локально внедренное в фазовое пространство с большим числом измерений. Как первое следствие, мы получаем, что энергия равномерно и линейно ускоренной частицы должна быть квантована. Кроме того, в этом контекцте нарушается универсальность гравитационного взаимодействия, но не обнаружено противоречия с верхними границами, полученными из проверки принципа эквивалентности.

Riassunto

Discutiamo la possibilità di verificare l’ipotesi che l’accelerazione propria di una particella massiva non possa eccedere un limite naturale, fissato dalla sua massa a riposo. A questo scopo analizziamo le conseguenze fenomenologiche di uno schema geometrico in cui lo spazio-tempo, a livello microscopico, deve essere considerato come un’ipersuperficie quadridimensionale localmente immersa nello spazio delle fasi ottodimensionale. Come prima conseguenza troviamo che l’energia di una particella che si muove di moto rettilineo uniformemente accelerato dovrebbe essere quantizzata. Inoltre, in questo contesto si viola l’universalità dell’interazione gravitazionale, ma non troviamo alcuna contraddizione con i limiti superiori dedotti dai tests noti del principio di equivalenza.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. R. Caianiello:Lett. Nuovo Cimento,32, 65 (1981);Semin. Mat. Fis. Milano,53, 245 (1983);E. R. Caianiello, S. De Filippo, G. Marmo andG. Vilasi:Lett. Nuovo Cimento,34, 112 (1982).MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. E. Brandt:Lett. Nuovo Cimento,38, 522 (1983); inProceedings of the XIII International Colloquium on Group Theoretical Methods in Physics, edited byW. W. Zachary (World Scientific, Singapore, 1984), p. 519.CrossRefGoogle Scholar
  3. [3]
    M. Toller:Nuovo Cimento B,102, 261 (1988).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Carmeli:Lett. Nuovo Cimento,41, 551 (1984);Found. Phys.,15, 1263 (1985).ADSCrossRefGoogle Scholar
  5. [5]
    E. R. Caianiello andG. Vilasi:Lett. Nuovo Cimento,30, 469 (1981);E. R. Caianiello, S. De Filippo andG. Vilasi:Lett. Nuovo Cimento,33, 55 (1982).MathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Scarpetta:Lett. Nuovo Cimento,41, 51 (1984);W. Guz andG. Scarpetta: inQuantum Field Theory, edited byF. Mancini (North Holland, Amsterdam, 1986), p. 233.ADSCrossRefGoogle Scholar
  7. [7]
    H. E. Brandt: inProceedings of the XV International Colloquium on Group Theoretical Methods in Physics, edited byR. Gilmore (World Scientific, Singapore, 1986), p. 569; inThe Physics of Phase Space, edited byY. S. Kim andW. W. Zachary (Springer-Verlag, New York, N. Y., 1987), p. 414.Google Scholar
  8. [8]
    M. Gasperini:Astrophys. Space Sci.,138, 387 (1987).ADSCrossRefGoogle Scholar
  9. [9]
    E. R. Caianiello:Lett. Nuovo Cimento,38, 539 (1983);E. R. Caianiello, G. Marmo andG. Scarpetta:Nuovo Cimento A,86, 337 (1985);E. R. Caianiello: inFrontiers of Nonequilibrium Statistical Physics, edited byG. T. Moore andM. O. Scully (Plenum Press, New York, N.Y., 1986), p. 453; inTopics in the General Theory of Structures, edited byE. R. Caianiello andM. A. Aizerman (Reidel, Dordrecht, 1987), p. 199;E. R. Caianiello andW. Guz:Phys. Lett. A,126, 223 (1988);E. R. Caianiello:Quantum and Other Physics as System Theory, Salerno University Report No. DFT/US.020/89.MathSciNetCrossRefGoogle Scholar
  10. [10]
    E. R. Caianiello:Nuovo Cimento B,59, 350 (1980).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Das:J. Math. Phys. (N.Y.),21, 1506, 1513 (1980);A. Das:Prog. Theor. Phys.,70, 1666 (1983).ADSCrossRefGoogle Scholar
  12. [12]
    H. E. Brandt: inProceedings of the Fifth Marcel Grossmann Meeting, edited byD. G. Blair andM. J. Buckingham (World Scientific, Singapore, 1989), p. 771.Google Scholar
  13. [13]
    P. Voracek:Astrophys. Space Sci.,159, 181 (1989).ADSCrossRefGoogle Scholar
  14. [14]
    E. R. Caianiello:Lett. Nuovo Cimento,41, 370 (1984).MathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Gasperini andG. Scarpetta: inProceedings of the Fifth Marcel Grossmann Meeting, edited byD. G. Blair andM. J. Buckingham (World Scientific, Singapore, 1989);E. R. Caianiello, A. Feoli, M. Gasperini andG. Scarpetta:Quantum corrections to the spacetime metric from geometric phase space quantization, Int. J. Theor. Phys.,29, (1990) (in press).Google Scholar
  16. [16]
    H. J. De Vega andN. Sanchez:Nucl. Phys. B,299, 818 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    J. S. Bell andJ. M. Leinaas:Nucl. Phys. B,212, 131 (1983).ADSCrossRefGoogle Scholar
  18. [18]
    E. R. Caianiello, M. Gasperini andG. Scarpetta: in preparation.Google Scholar
  19. [19]
    C. Rebbi:Phys. Rep.,12, 1 (1974).MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    E. R. Caianiello andW. Guz:Lett. Nuovo Cimento,43 1 (1985).CrossRefGoogle Scholar
  21. [21]
    E. R. Caianiello, M. Gasperini, E. Predazzi andG. Scarpetta:Phys. Lett. A,132, 82 (1988).MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. D. Kruskal:Phys. Rev.,119, 1743 (1960).MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    W. Rindler:Am. J. Phys.,34, 1174 (1966).ADSCrossRefGoogle Scholar
  24. [24]
    E. Fischbach et al.:Ann. Phys. (N.Y.),182, 1 (1988).ADSCrossRefGoogle Scholar
  25. [25]
    M. Gasperini: inProceedings of the 1987 Erice School on Cosmology and Gravitation, edited byV. De Sabbata andV. N. Melnikov (Kluwer Acad. Pub., Dordrecht, 1988), p. 181.Google Scholar
  26. [26]
    R. D. Reasemberg et al.:Astrophys. J.,234, L219 (1979).ADSCrossRefGoogle Scholar
  27. [27]
    S. K. Bose andW. D. McGlinn:Phys. Rev. D,38, 2335 (1988).ADSCrossRefGoogle Scholar
  28. [28]
    L. Davis, A. S. Goldhaber andM. M. Nieto:Phys. Rev. Lett.,35, 1402 (1975).ADSCrossRefGoogle Scholar
  29. [29]
    M. Gasperini:Phys. Rev. Lett.,62, 1945 (1989).ADSCrossRefGoogle Scholar
  30. [30]
    M. J. Longo:Phys. Rev. Lett.,60, 173 (1988);L. M. Krauss andS. Tremaine:Phys. Rev. Lett.,60, 177 (1988).ADSCrossRefGoogle Scholar
  31. [31]
    M. Fritschi et al.:Phys. Lett. B,173, 485 (1986).ADSCrossRefGoogle Scholar
  32. [32]
    J. M. Lo Secco:Phys. Rev. D,38, 3313 (1988).ADSCrossRefGoogle Scholar
  33. [33]
    M. Gasperini:Phys. Rev. D,38, 2635 (1988).ADSCrossRefGoogle Scholar
  34. [34]
    M. Gasperini:Experimental constraints on a minimal and nonminimal violation of the equivalence principle in the oscillations of massive neutrinos, Phys. Rev. D (in press).Google Scholar
  35. [35]
    L. Landau andE. Lifschitz:Theorie du champ (Editions MIR, Moscow, 1966), sect.89.Google Scholar
  36. [36]
    See for exampleV. Flaminio andB. Saitta:Riv. Nuovo Cimento,10, No. 8 (1987).Google Scholar
  37. [37]
    C. Angelini et al.:Phys. Lett. B,179, 307 (1986).ADSCrossRefGoogle Scholar
  38. [38]
    See for exampleJ. W. F. Valle: CERN Report No. TH.514/88 (to be published in theProceedings of the XXIV International Conference on High Energy Physics (Munich, August 1988).Google Scholar
  39. [39]
    S. Midorikawa, H. Terazawa andK. Akama:Mod. Phys. Lett. A,2, 225 (1987);3, 215 (1988).CrossRefGoogle Scholar
  40. [40]
    G. Giacomelli: Bologna University Report No. DFUB-88/19,Future higher energy nonaccelerators experiments (to be published inProceedings of the Neutrino 88 Conference, Boston, Mass., 1988).Google Scholar
  41. [41]
    G. Auriemma, T. K. Gaisser andP. Lipari:Nuovo Cimento B,102, 583 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • E. R. Caianiello
    • 1
  • M. Gasperini
    • 2
    • 3
  • G. Scarpetta
    • 1
    • 3
  1. 1.Facoltà di ScienzeDipartimento di Fisica Teorica e Sue Metodologie per le Scienze ApplicateBaronissi (Salerno)Italia
  2. 2.Dipartimento di Fisica Teorica dell’UniversitàTorinoItalia
  3. 3.Istituto Nazionale di Fisica NucleareTorinoSezione di TorinoItalia

Personalised recommendations