Skip to main content
Log in

Phenomenological consequences of a geometric model with limited proper acceleration

Феноменологические следствия геометрической модели с ограниченным собственным ускорением

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We discuss the possibility of testing the hypothesis that the proper acceleration of a massive particle cannot exceed a natural limit, determined by its rest mass. To this aim we consider the phenomenological consequences of a geometric scheme in which the space-time, at a microscopic level, is to be regarded as a four-dimensional hypersurface locally embedded in a higher-dimensional phase space. As a first consequence we find that the energy of a uniformly and linearly accelerated particle should be quantized. Moreover, in this context the universality of the gravitational interaction is violated, but no contradiction is found with the upper bounds deduced from the present tests of the equivalence principle.

Riassunto

Discutiamo la possibilità di verificare l’ipotesi che l’accelerazione propria di una particella massiva non possa eccedere un limite naturale, fissato dalla sua massa a riposo. A questo scopo analizziamo le conseguenze fenomenologiche di uno schema geometrico in cui lo spazio-tempo, a livello microscopico, deve essere considerato come un’ipersuperficie quadridimensionale localmente immersa nello spazio delle fasi ottodimensionale. Come prima conseguenza troviamo che l’energia di una particella che si muove di moto rettilineo uniformemente accelerato dovrebbe essere quantizzata. Inoltre, in questo contesto si viola l’universalità dell’interazione gravitazionale, ma non troviamo alcuna contraddizione con i limiti superiori dedotti dai tests noti del principio di equivalenza.

Резюме

Мы обсуждаем возможность проверки гипотезы, что собственное ускорение массивной частицы не может превышать естественного предела, который определяется массой покоя частицы. С этой целью мы рассматриваем феноменологические следствия геометрической схемы, в которой пространствовремя на микроскопическом уровне следует рассматривать как четырехмерное гиперпространство, локально внедренное в фазовое пространство с большим числом измерений. Как первое следствие, мы получаем, что энергия равномерно и линейно ускоренной частицы должна быть квантована. Кроме того, в этом контекцте нарушается универсальность гравитационного взаимодействия, но не обнаружено противоречия с верхними границами, полученными из проверки принципа эквивалентности.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. R. Caianiello:Lett. Nuovo Cimento,32, 65 (1981);Semin. Mat. Fis. Milano,53, 245 (1983);E. R. Caianiello, S. De Filippo, G. Marmo andG. Vilasi:Lett. Nuovo Cimento,34, 112 (1982).

    Article  MathSciNet  Google Scholar 

  2. H. E. Brandt:Lett. Nuovo Cimento,38, 522 (1983); inProceedings of the XIII International Colloquium on Group Theoretical Methods in Physics, edited byW. W. Zachary (World Scientific, Singapore, 1984), p. 519.

    Article  Google Scholar 

  3. M. Toller:Nuovo Cimento B,102, 261 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Carmeli:Lett. Nuovo Cimento,41, 551 (1984);Found. Phys.,15, 1263 (1985).

    Article  ADS  Google Scholar 

  5. E. R. Caianiello andG. Vilasi:Lett. Nuovo Cimento,30, 469 (1981);E. R. Caianiello, S. De Filippo andG. Vilasi:Lett. Nuovo Cimento,33, 55 (1982).

    Article  MathSciNet  Google Scholar 

  6. G. Scarpetta:Lett. Nuovo Cimento,41, 51 (1984);W. Guz andG. Scarpetta: inQuantum Field Theory, edited byF. Mancini (North Holland, Amsterdam, 1986), p. 233.

    Article  ADS  Google Scholar 

  7. H. E. Brandt: inProceedings of the XV International Colloquium on Group Theoretical Methods in Physics, edited byR. Gilmore (World Scientific, Singapore, 1986), p. 569; inThe Physics of Phase Space, edited byY. S. Kim andW. W. Zachary (Springer-Verlag, New York, N. Y., 1987), p. 414.

    Google Scholar 

  8. M. Gasperini:Astrophys. Space Sci.,138, 387 (1987).

    Article  ADS  Google Scholar 

  9. E. R. Caianiello:Lett. Nuovo Cimento,38, 539 (1983);E. R. Caianiello, G. Marmo andG. Scarpetta:Nuovo Cimento A,86, 337 (1985);E. R. Caianiello: inFrontiers of Nonequilibrium Statistical Physics, edited byG. T. Moore andM. O. Scully (Plenum Press, New York, N.Y., 1986), p. 453; inTopics in the General Theory of Structures, edited byE. R. Caianiello andM. A. Aizerman (Reidel, Dordrecht, 1987), p. 199;E. R. Caianiello andW. Guz:Phys. Lett. A,126, 223 (1988);E. R. Caianiello:Quantum and Other Physics as System Theory, Salerno University Report No. DFT/US.020/89.

    Article  MathSciNet  Google Scholar 

  10. E. R. Caianiello:Nuovo Cimento B,59, 350 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Das:J. Math. Phys. (N.Y.),21, 1506, 1513 (1980);A. Das:Prog. Theor. Phys.,70, 1666 (1983).

    Article  ADS  Google Scholar 

  12. H. E. Brandt: inProceedings of the Fifth Marcel Grossmann Meeting, edited byD. G. Blair andM. J. Buckingham (World Scientific, Singapore, 1989), p. 771.

    Google Scholar 

  13. P. Voracek:Astrophys. Space Sci.,159, 181 (1989).

    Article  ADS  Google Scholar 

  14. E. R. Caianiello:Lett. Nuovo Cimento,41, 370 (1984).

    Article  MathSciNet  Google Scholar 

  15. M. Gasperini andG. Scarpetta: inProceedings of the Fifth Marcel Grossmann Meeting, edited byD. G. Blair andM. J. Buckingham (World Scientific, Singapore, 1989);E. R. Caianiello, A. Feoli, M. Gasperini andG. Scarpetta:Quantum corrections to the spacetime metric from geometric phase space quantization, Int. J. Theor. Phys.,29, (1990) (in press).

    Google Scholar 

  16. H. J. De Vega andN. Sanchez:Nucl. Phys. B,299, 818 (1988).

    Article  ADS  Google Scholar 

  17. J. S. Bell andJ. M. Leinaas:Nucl. Phys. B,212, 131 (1983).

    Article  ADS  Google Scholar 

  18. E. R. Caianiello, M. Gasperini andG. Scarpetta: in preparation.

  19. C. Rebbi:Phys. Rep.,12, 1 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  20. E. R. Caianiello andW. Guz:Lett. Nuovo Cimento,43 1 (1985).

    Article  Google Scholar 

  21. E. R. Caianiello, M. Gasperini, E. Predazzi andG. Scarpetta:Phys. Lett. A,132, 82 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  22. M. D. Kruskal:Phys. Rev.,119, 1743 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  23. W. Rindler:Am. J. Phys.,34, 1174 (1966).

    Article  ADS  Google Scholar 

  24. E. Fischbach et al.:Ann. Phys. (N.Y.),182, 1 (1988).

    Article  ADS  Google Scholar 

  25. M. Gasperini: inProceedings of the 1987 Erice School on Cosmology and Gravitation, edited byV. De Sabbata andV. N. Melnikov (Kluwer Acad. Pub., Dordrecht, 1988), p. 181.

    Google Scholar 

  26. R. D. Reasemberg et al.:Astrophys. J.,234, L219 (1979).

    Article  ADS  Google Scholar 

  27. S. K. Bose andW. D. McGlinn:Phys. Rev. D,38, 2335 (1988).

    Article  ADS  Google Scholar 

  28. L. Davis, A. S. Goldhaber andM. M. Nieto:Phys. Rev. Lett.,35, 1402 (1975).

    Article  ADS  Google Scholar 

  29. M. Gasperini:Phys. Rev. Lett.,62, 1945 (1989).

    Article  ADS  Google Scholar 

  30. M. J. Longo:Phys. Rev. Lett.,60, 173 (1988);L. M. Krauss andS. Tremaine:Phys. Rev. Lett.,60, 177 (1988).

    Article  ADS  Google Scholar 

  31. M. Fritschi et al.:Phys. Lett. B,173, 485 (1986).

    Article  ADS  Google Scholar 

  32. J. M. Lo Secco:Phys. Rev. D,38, 3313 (1988).

    Article  ADS  Google Scholar 

  33. M. Gasperini:Phys. Rev. D,38, 2635 (1988).

    Article  ADS  Google Scholar 

  34. M. Gasperini:Experimental constraints on a minimal and nonminimal violation of the equivalence principle in the oscillations of massive neutrinos, Phys. Rev. D (in press).

  35. L. Landau andE. Lifschitz:Theorie du champ (Editions MIR, Moscow, 1966), sect.89.

    Google Scholar 

  36. See for exampleV. Flaminio andB. Saitta:Riv. Nuovo Cimento,10, No. 8 (1987).

  37. C. Angelini et al.:Phys. Lett. B,179, 307 (1986).

    Article  ADS  Google Scholar 

  38. See for exampleJ. W. F. Valle: CERN Report No. TH.514/88 (to be published in theProceedings of the XXIV International Conference on High Energy Physics (Munich, August 1988).

  39. S. Midorikawa, H. Terazawa andK. Akama:Mod. Phys. Lett. A,2, 225 (1987);3, 215 (1988).

    Article  Google Scholar 

  40. G. Giacomelli: Bologna University Report No. DFUB-88/19,Future higher energy nonaccelerators experiments (to be published inProceedings of the Neutrino 88 Conference, Boston, Mass., 1988).

  41. G. Auriemma, T. K. Gaisser andP. Lipari:Nuovo Cimento B,102, 583 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by M.P.I., fund 40% art. 65 D.P.R. 382/80.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caianiello, E.R., Gasperini, M. & Scarpetta, G. Phenomenological consequences of a geometric model with limited proper acceleration. Nuov Cim B 105, 259–278 (1990). https://doi.org/10.1007/BF02726101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02726101

PACS

PACS

PACS

Navigation