Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 18, Supplement 1, pp 77–101 | Cite as

On the theory of classical fluids

  • L. Verlet
Article

Résumé

On montre que la sommation d’une large class de diagrammes dans un développement du type « cluster » permet l’établissement d’une équation intégrale pour la fonction de corrélation dans les fluides classiques. Après une approximation, cette équation se réduit à celle de Born, Green et Kirkwood, et elle reproduit plus exactement que celle-ci les coefficients du viriel. On donne les termes correctifs, de plus en plus compliqués, qui permettent de rendre exacte notre équation. On calcule enfin la fonction de corrélation à trois corps, qui, introduite dans l’équation d’Yvon-Born-Green, permet de calculer la fonction de corrélation à deux corps. On confirme ainsi le calcul direct de cette fonction, et on montre que notre équation intégrale inclut des corrections à l’approximation de superposition.

Riassunto

Si mostra che la somma di una larga classe di diagrammi in uno sviluppo del tipo « cluster » permette di scrivere una equazione integrale per la funzione di correlazione nei fluidi classici. Con una approssimazione, questa equazione si riduce a quella di Born, Green e Kirkwood e riproduce più esattamente di quella i coefficienti del viriale. Si danno i termini correttivi, sempre più complicati, che permettono di rendere esatta la nostra equazione. Si calcola infine la funzione di correlazione a tre corpi, che, introdotta nell’equazione di Yvon-Born-Green, permette di calcolare la funzione di correlazione a due corpi. Si conferma così il calcolo diretto di questa funzione, e si mostra che la nostra equazione integrale include delle correzioni all’approssimazione di sovrapposizione.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (**).
    At the moment when this paper was ready to be sent, Prof.Yvon kindly communicated us preprints of a work due to Dr.E. Meeron which is in many points similar to the present paper.Google Scholar
  2. (1).
    L. S. Ornstein andF. Zernicke:Amsterdam Proc.,17, 793 (1914);F. Zernicke:Amsterdam Proc.,19, 1520 (1916);L. S. Ornstein andF. Zernicke:Phys. Zeits.,19, 134 (1918);26, 761 (1926).Google Scholar
  3. (2).
    H. D. Ursell:Proc. Camb. Phil. Soc.,23, 685 (1927);J. E. Mayer andM. G. Mayer:Statistical Mechanics (New York, 1940);W. G. McMillan andJ. E. Mayer:Journ. Chem. Phys.,13, 276 (1945). See also ref. (3) and the excellent review paper ofE. Salpeter:Ann. Phys.,5, 183 (1958).MathSciNetADSCrossRefMATHGoogle Scholar
  4. (3).
    J. E. Mayer andE. W. Montroll:Journ. Chem. Phys.,9, 2 (1941).ADSCrossRefGoogle Scholar
  5. (4).
    J. E. Mayer:Journ. Chem. Phys.,18, 1426 (1956).ADSCrossRefGoogle Scholar
  6. (5).
    P. Debye andE. Hückel:Phys. Zeits.,24, 185 (1923).MATHGoogle Scholar
  7. (6).
    T. Morita:Progr. Theor. Phys.,20, 920 (1958). See alsoE. Meeron:Phys. Fluids,1, 246 (1958).ADSCrossRefMATHGoogle Scholar
  8. (*).
    After this paper was written, we realized that this integral equation was contained, with different derivations, in the paper of Meeron quoted in ref. (6) and in a paper byJ. M. J. Van Leuwen, J. Groenveld andJ. de Boer:Physica,25, 792 (1959).ADSCrossRefMATHGoogle Scholar
  9. (7).
    J. Yvon:Suppl. Nuovo Cimento,9, 144 (1958);Actualités scientifiques et industrielles (Paris, 1935), no. 203.CrossRefGoogle Scholar
  10. (8).
    M. Born andH. S. Green:Proc. Roy. Soc. (London), A188, 10 (1946).MathSciNetADSCrossRefGoogle Scholar
  11. (9).
    J. G. Kirkwood:Journ. Chem. Phys.,3, 300 (1935).ADSCrossRefMATHGoogle Scholar
  12. (10).
    R. Abe:Progr. Theor. Phys.,22, 213 (1959).ADSCrossRefMATHGoogle Scholar
  13. (*).
    Note added in proof. - In an article which appeared recently (Progr. Theor. Phys.,23, 829 (1960))Morita has added to his preceeding expansion the missing terms. He thus obtains the eqs. (37–38) of the present paper: moreover, the same author has given the expression of the correction terms to the integral equation as in the preprint of Dr.Meeron and as in the present paper (Progr. Theor. Phys.,23, 385 (1960)).Google Scholar
  14. (11).
    See ref. (1) andL. Goldstein:Phys. Rev.,84, 466 (1951).Google Scholar
  15. (12).
    A. Eisenstein andN. S. Gingrich:Phys. Rev.,62, 261 (1942).ADSCrossRefGoogle Scholar
  16. (13).
    J. G. Kirkwood, V. A. Lewinson andB. J. Alder:Journ. Chem. Phys.,20, 929 (1952).ADSCrossRefGoogle Scholar
  17. (14).
    Various authors have investigated this problem by considering the first few terms of the expansion of (81):Yvon: private communication;R. Abe:Progr. Theor. Phys.,21, 421 (1959).Google Scholar

Copyright information

© Società Italiana di Fisica 1960

Authors and Affiliations

  • L. Verlet
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesFaculté des SciencesOrsay

Personalised recommendations