Il Nuovo Cimento A (1965-1970)

, Volume 70, Issue 3, pp 289–312 | Cite as

Group-theoretical analysis of elementary particles in an external electromagnetic field II.—The nonrelativistic particle in a constant and uniform field

  • H. Bacry
  • Ph. Combe
  • J. L. Richard


Two subgroups of the Galilei group are shown to play a particular role in the case of charged systems in an external electro-magnetic field which is constant and uniform. Projective representations of these subgroups involve the electric charge and mass as generators of phase factors. Additivity and superselection rules for charge and mass appear as direct consequences. A comparison is made with the relativistic case investigated in the first part of this article.


Central Extension Classical Field Theory Superselection Rule Spinless Particle Galilei Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Теоретико-групповой анализ элементарных частиц во внешнем электромагнитном поле II: Нерелятивистская частица в постоянном и однородном поле


Si mostra che due sottogruppi del gruppo di Galilei hanno un ruolo particolare nel caso di sistemi carichi in un campo elettromagnetico esterno costante ed uniforme. Le rappresentazioni proiettive di questi sottogruppi comportano come generatori dei fattori di fase la caric elettrica e la massa. L'addittività e le regole di superselezione per la carica e la massa ne risultano conseguenze dirette. Si fa un confronto con il caso relativistico studiato nella prima parte di questo articolo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    H. Bacry, Ph. Combe andJ. L. Richard:Nuovo Cimento,67 A, 267 (1970).ADSMathSciNetCrossRefGoogle Scholar
  2. (2).
    J. M. Levy-Leblond:Journ. Math. Phys.,4, 776 (1963).ADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    L. J. Tassie andH. A. Buchdahl:Austr. Journ. Phys.,17, 431 (1964);18, 109 (1965).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    C. W. Mackey:Induced Representations, Chicago Lectures (1965).Google Scholar
  5. (5).
    R. F. Streater:Comm. Math. Phys.,4, 217 (1967).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    H. Bacry:Comm. Math. Phys.,5, 97 (1967).ADSMathSciNetCrossRefGoogle Scholar
  7. (7).
    E. J. Saletan:Journ. Math. Phys.,2, 1 (1961);E. Inonu andE. P. Wigner:Proc. Natl. Acad. U.S.,39, 510 (1953);40, 119 (1954).ADSMathSciNetCrossRefGoogle Scholar
  8. (8).
    H. Bacry:Leçons sur la théorie des groupes et les symétries des particules élémentaires, Sect.8.6 (New York, 1967).Google Scholar
  9. (9).
    H. Bacry andJ. M. Levy-Leblond:Journ. Math. Phys.,9, 1605 (1968).ADSMathSciNetCrossRefGoogle Scholar
  10. (10).
    L. Landau andE. Lifchitz:Classical Field Theory, Chap. 3, Sect.22 (London, 1959).Google Scholar
  11. (11).
    J. Zak:Phys. Rev.,134, A 1602 (1964).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • H. Bacry
    • 1
  • Ph. Combe
    • 1
  • J. L. Richard
    • 2
  1. 1.Centre Universitaire de MarseilleLuminy
  2. 2.Centre de Physique ThéoriqueC.N.R.S.Marseille

Personalised recommendations