Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 13, Issue 5, pp 891–908 | Cite as

Application of the Chew-Low formalism of multi-channel reactions

  • B. W. Lee
  • A. Klein
Article

Summary

The Low equation for a non-relativistic scattering process is investigated, using a model in which the scattering source can exist in more than one state, and the «average» interaction between the source and the particle is factorizable. The branching ratio theorem and the optical theorem are derived directly from the Low equation. The Low equation is solved by the method of Castellejo, Dalitz and Dyson, and the unique solution is determined by investigating the spectrum of the unperturbed Hamiltonian. The resonance phenomena are studied and the Breit-Wigner resonance formula is derived utilizing the properties of the generalizedR-function. The more general applicability of the method is indicated.

Riassunto

Si esamina l’equazione di Low per un processo di scattering non relativistico servendosi di un modello in cui la sorgente di scattering può esistere in più di uno stato, e l’interazione «media» tra la sorgente e la particella è fattorizzabile. Il teorema della branching ratio e il teorema ottico si derivano direttamente dall’equazione di Low. Si risolve l’equazione di Low col metodo di Castillejo, Dalitz e Dyson e si determina la soluzione unica esaminando lo spettro dell’hamiltoniana imperturbata. Si studiano i fenomeni di risonanza e la formula della risonanza di Breit-Wigner si deriva utilizzando le proprietà della funzioneR generalizzata. Si indica la più generale applicabilità del metodo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. F. Chew andF. E. Low:Phys. Rev.,101, 1571 (1956).MathSciNetADSGoogle Scholar
  2. (2).
    Suitably catalogued inJ. G. Taylor:Lectures on Dispersion Relations in Quantum Field Theory and Related Topics, Lecture notes. University of Maryland (1958).Google Scholar
  3. (3).
    L. Castellejo, R. H. Dalitz andF. J. Dyson:Phys. Rev.,101, 453 (1956), hereafter referred to as CDD.ADSCrossRefGoogle Scholar
  4. (4).
    For an extensive bibliography, seeA. M. Lane andR. G. Thomas:Rev. Mod. Phys.,30, 257 (1958). Also, reference (5).MathSciNetADSCrossRefGoogle Scholar
  5. (5).
    H. Feshbach:Ann. Phys.,5, 357 (1958).MathSciNetADSCrossRefGoogle Scholar
  6. (6).
    F. J. Dyson:Phys. Rev.,100, 157 (1957).MathSciNetADSCrossRefGoogle Scholar
  7. (7).
    R. Norton andA. Klein:Phys. Rev.,109, 584 (1958).MathSciNetADSCrossRefGoogle Scholar
  8. (8).
    R. Norton andA. Klein:Phys. Rev.,109, 991 (1958).MathSciNetADSCrossRefGoogle Scholar
  9. (9).
    R. Haag:Nuovo Cimento,5, 203 (1957).CrossRefGoogle Scholar
  10. (10).
    D. B. Fairlie andJ. C. Polkinghorne:Nuovo Cimento,8, 345, 555 (1958).CrossRefGoogle Scholar
  11. (11).
    G. C. Wick:Rev. Mod. Phys.,27, 339 (1955).MathSciNetADSCrossRefGoogle Scholar
  12. (12).
    B. Zumino:On the Formal Theory of Collision and Reaction Processes. New York University Institute of Mathematical Sciences Research Report PB122994 (1956).Google Scholar
  13. (13).
    J. M. Blatt andV. F. Weisskopf:Theoretical Nuclear Physics (New York, 1952), p. 558.Google Scholar
  14. (14).
    B. Friedman:Principles and Techniques of Applied Mathematics (New York, 1956), p. 28a. foll.Google Scholar
  15. (15).
    S. D. Drell andF. Zachariasen:Phys. Rev.,105, 1407 (1957).ADSCrossRefGoogle Scholar
  16. (16).
    M. Gell-Mann andM. L. Goldberger:Phys. Rev.,91, 398 (1953). Eq. (4.4) of that paper contains a trivial error.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1959

Authors and Affiliations

  • B. W. Lee
    • 1
  • A. Klein
    • 1
  1. 1.University of PennsylvaniaPhiladelphia

Personalised recommendations