Skip to main content
Log in

Strong and weak gravity: A class of generally covariant mixing models of spin-2 neutral fields: Linearization

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

By linearizing, in an unorthodox way, the nonlinear partial differential equation system proposed to describe the interaction of a massless and massive graviton, it is discovered that the equations yield a variety of theories with different structure. The general system of equations which results from this linearization is a Lorentz-covariant system of coupled equations in two symmetric Lorentz tensor fields. We distinguish between situations where the system may be uncoupled by a linear transformation of the tensor fields, thus permitting the definition of diagonalizing fields, and those situations where this is not possible. The diagonalizable cases are examined for mass and spin structure, and are divided into perturbative and nonperturbative cases. One of the perturbative cases contains the theory of Aichelburg and Mansouri. Finally we discuss the procedure for solving the explicitly coupled equations.

Riassunto

Linearizzando, con procedimento non ortodosso, il sistema non lineare di equazioni differenziali parziali che è stato proposto per descrivere l’interazione fra un gravitone dotato di massa e uno privo di massa, si è scoperto che le equazioni producono una varietà di teorie con strutture diverse. Il sistema generale di equazioni che si ottiene da questa linearizzazione è un sistema covariante di Lorentz di equazioni accoppiate in due campi tensoriali simmetrici di Lorentz. Si fa distinzione fra casi in cui si può disaccoppiare il sistema per mezzo di una trasformazione, lineare dei campi tensoriali, permettendo così la definizione di campi diagonalizzanti, e casi in cui ciò non è possibile. Si esamina la massa e la struttura dello spin nei casi in cui si hanno campi diagonalizzabili e si distingue ulteriormente fra casi perturbativi e non perturbativi. Uno dei casi perturbativi comprende la teoria di Aichelburg e Mansouri. Infine si discute il procedimento per risolvere le equazioni accoppiate esplicitamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lubkin:Bull. Amer. Phys. Soc.,11, 397 (1966).

    Google Scholar 

  2. C. J. Isham, A. Salam andJ. Strathdee:Phys. Rev. D,3, 867 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  3. W. C. Hammel andE. Lubkin: University of Wisconsin-Milwaukee preprint, «Strong» and «weak» gravity: A class of generally covariant mixing models of spin-2neutral fields, UWM-4867-73-7, which supersedes UWM-4867-72-6.

  4. V. I. Ogievetsky andI. V. Polubarinov:Ann. of Phys.,35, 167 (1965), see particularly p. 170 and Sect.5.

    Article  ADS  Google Scholar 

  5. S. Deser: inNonpolynomial Lagrangians, Renormalization and Gravity, Vol.1, edited byA. Salam., ofLectures from the Coral Gables Conference on Fundamental Interactions at High Energies (New York, N. Y., 1971).

  6. P. C. Aichelburg andR. Mansouri:Generally covariant massive gravitation, University of Vienna preprint (1971).

  7. R. Mansouri:Allgemein.-kovariante Zwei-Tensor Theorie der Gravitation (Thesis), University of Vienna (1972);Acta Phys. Austriaca,37, 152 (1973).

  8. J. K. Lawrence andE. T. Toton:Ann. of Phys.,72, 293 (1972).

    Article  ADS  Google Scholar 

  9. J. L. Synge andA. Schild:Tensor Calculus (Toronto, 1962);E. Schrödinger:Space-Time Structure (Cambridge, 1963).

  10. N. Rosen:Phys. Rev.,57, 147, 151, 154 (1940);Ann. of Phys.,22, 1 (1963);38, 170 (1966). See alsoA. Papapetrou:Proc. Roy. Irish Acad.,52 A, 11 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  11. S. N. Gupta:Rev. Mod. Phys.,29, 334 (1957);Phys. Rev.,96, 1683 (1954);Proc. Phys. Soc.,65 A, 161 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Y. Choquet-Bruhat:Comm. Math. Phys.,12, 16 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  13. See for exampleYa. B. Zeldovich andI. D. Novikov:Relativistic, Astrophysics (Chicago, Ill., 1971). See in particular Subsect.2.5.

  14. See for exampleA. Peres:Invariant evolution of gravitational field, inRelativity and Gravitation, edited byC. G. Kuper andA. Peres (New York, N. Y., 1971).

  15. B. S. De Witt:The quantum theory of gravity, publication No. 18, Institute of Field Physics, University of North Carolina (1966).

  16. J. A. Wheeler:Geometrodynamics (New York, N. Y., 1961);Geometrodynamics and the issue of the final state, inRelativity, Groups and Topology, edited byC. De Witt andB. De Witt (New York, N. Y., 1964).

  17. To be published inJourn. Math. Phys.

  18. R. Adler, M. Bazin andM. Schiffer:Introduction to General Relativity (New York, N. Y., 1965).

  19. R. U. Sexl:Fortschr. Phys.,15, 269 (1967).

    Article  Google Scholar 

  20. G. Wentzel:Quantum Theory of Fields (New York, N. Y., 1949), p. 205.

  21. J. L. Synge andA. Schild:Tensor Calculus (Toronto, 1962).

  22. E.g.,J. A. Wolf:Spaces of Constant Curvature (New York, N. Y., 1967).

  23. W. E. Thirring:Ann. of Phys.,16, 96 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Bers, R. Fox, C. G. Kuper andS. G. Lipson:The impossibility of free tachyons, inRelativity and Gravitation, edited byC. G. Kuper andA. Peres (New York, N. Y., 1971).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammel, W.C. Strong and weak gravity: A class of generally covariant mixing models of spin-2 neutral fields: Linearization. Nuov Cim B 25, 757–785 (1975). https://doi.org/10.1007/BF02724750

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02724750

Navigation