Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 25, Issue 2, pp 595–632 | Cite as

A new method for solving the many-body boson problem. I

  • K. W. Wong
  • P. C. W. Fung
Article

Summary

We develop in this paper a new method for solving the many-body boson system based on a generalizedN-particle ground-state trial wave function and the principle of canonical transformation. Explicit construction of the matrix representations and an iteration method are given. Some mathematical theorems and the range of validity pertaining to the theory are also presented.

Новый метод решения многочастичной бозонной проблемы. I

Резюме

В этой статье мы развиваем новый метод для решения многочастичной бозонной проблемы, который основан на пробной волновой функции обобщенногоN-частичного основного состояния и принципе канонического преобразования. Предлагаются явное конструирование матричных представлений и итерационный метод. Также приводятся некоторые математические теоремы и область применимости рассматриваемой теории.

Riassunto

In questo articolo si svolge un metodo nuovo per risolvere il sistema di bosoni a molti corpi fondato su una funzione d’onda di prova generalizzata dello stato fondamentale aN particelle e sul principio di tranformazione canonica. Si costruiscono esplicitamente le rappresentazioni matriciali e un metodo iterativo. Si espongono anche alcuni teoremi matematici e il campo di validità della teoria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    K. A. Bruechner:Phys. Rev.,100, 36 (1955).ADSCrossRefGoogle Scholar
  2. (2).
    V. M. Galitskü:Žurn. Ėksp. Teor. Fiz.,34, 151 (1958).Google Scholar
  3. (3).
    N. M. Hugenholtz andL. Van Hove:Physica,24, 363 (1958).MathSciNetADSCrossRefMATHGoogle Scholar
  4. (4).
    N. N. Bogoliubov:Journ. Phys. (U.S.S.R.),11, 23 (1947).Google Scholar
  5. (5).
    N. N. Bogoliubov andD. N. Zubarev:Sov. Phys. JETP,1, 83 (1955).Google Scholar
  6. (6).
    N. N. Bogoliubov, V. V. Tolmachev andD. V. Shirkov:A New Method in the Theory of Superconductivity (New York, N. Y., 1958).Google Scholar
  7. (7).
    D. R. Hartree:Proc. Cambridge Phil. Soc.,24, 89 (1948).ADSCrossRefGoogle Scholar
  8. (8).
    A. Abrikosov, L. Gorkov andI. Dzyaloshinskii:Quantum Field Theoretical Methods in Statistical Physics (London, 1965).Google Scholar
  9. (9).
    E. Feenberg:Theory of Quantum Fluids (New York, N. Y., 1969).Google Scholar
  10. (10).
    R. Jastrow:Phys. Rev.,98, 1479 (1955).ADSCrossRefGoogle Scholar
  11. (11).
    L. Lee: Ph. D. Thesis, Kansas University (1974).Google Scholar
  12. (12).
    L. N. Cooper:Phys. Rev.,104, 1189 (1957).ADSCrossRefGoogle Scholar
  13. (13).
    J. Bardeen, L. N. Cooper andJ. R. Schrieffer:Phys. Rev.,108, 1175 (1957).MathSciNetADSCrossRefMATHGoogle Scholar
  14. (14).
    M. Kac:Probability and Related Topics in Physical Sciences (New York, N. Y., 1957).Google Scholar
  15. (15).
    J. Kirkwood:Journ. Chem. Phys.,14, 180 (1946).ADSCrossRefGoogle Scholar
  16. (16).
    M. Born andH. S. Green:A General Kinetic Theory of Liquids (Cambridge, 1949).Google Scholar
  17. (17).
    W. Meyer: Ph. D. Thesis, University of Southern California (1974).Google Scholar
  18. (18).
    G. W. Mackey:Mathematical Foundations of Quantum Mechanics (New York, N. Y., 1963).Google Scholar
  19. (19).
    T. D. Lee, K. Huang andC. N. Young:Phys. Rev.,105, 767 (1957).MathSciNetADSCrossRefGoogle Scholar
  20. (20).
    K. W. Wong:Journ. Math. Phys.,5, 637 (1964).ADSCrossRefGoogle Scholar
  21. (21).
    K. W. Wong:Proceedings of the XII International Conference on Low Temperature Physics (Kyoto, 1970).Google Scholar
  22. (22).
    L. D. Landau:Journ. Phys. U.S.S.R.,11, 91 (1947).Google Scholar
  23. (23).
    D. K. Lee:Phys. Rev. A,7, 2162 (1973).ADSCrossRefGoogle Scholar
  24. (24).
    P. R. Halmos:Measure Theory (Amsterdam, 1950).Google Scholar
  25. (25).
    M. A. Naimark:Normed Rings (Amsterdam, 1959).Google Scholar
  26. (26).
    E. C. Titchmarsh:Introduction to the Theory of Fourier Integrals (Oxford, 1950).Google Scholar
  27. (27).
    J. Von Neumann:Functional Operators.—Vol. I:Measures and Integrals (Princeton, N. J., 1950).Google Scholar

Copyright information

© Società Italiana di Fisica 1975

Authors and Affiliations

  • K. W. Wong
    • 1
  • P. C. W. Fung
    • 1
  1. 1.Department of Physics and AstronomyUniversity of KansasLawrence

Personalised recommendations